Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nickel phosphide (NiP) is an emerging efficient catalyst for the hydrogen evolution and water splitting. Herein, we report that NiP is also a promising catalyst for enhancing electrochemical dechlorination of chlorinated disinfection byproducts (DBPs). Amorphous NiP (ANP) mini-nanorod arrays were in-situ fabricated on nickel foam (NF) via a facile phosphidation process, and then used as a binder-free cathode for electrochemical dechlorination of trichloroacetic acid (TCAA). Results showed that ANP exhibited superior performance on electrochemical dechlorination of TCAA than other metal cathodes (e.g., NF and Pd/C). Scavenging experiments and electron spin resonance (ESR) technique indicated that atomic H* was generated from water reduction through ANP catalysis, and primarily contributed to TCAA dechlorination. Indeed, the superhydrophilic surface of ANP favored electrocatalyst/electrolyte contact, and its low impedance further afforded rapid electron transport from the electrode to water or protons for atomic H* generation. The kinetic modelling and mass balance evaluation revealed the transformation mechanism of TCAA dechlorination. This study is among the first to develop ANP as a binder-free cathode for electrochemical dechlorination, and have important implications for eliminating chlorinated DBPs in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2019.114930 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!