Low pressure modified polyamide 6 membrane for effective fractionation of dyes and NaCl.

Sci Total Environ

State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tianjin Polytechnic University, 300387 Tianjin, China; School of Environmental and Municipal Engineering, Tianjin Chengjian University, 300384 Tianjin, China.

Published: December 2019

A co-polymer (SPAA6) of 5-sulfoanthranilic acid (5SAA) and ε-caprolactam was used to prepare membrane through nonsolvent induced phase separation (NIPS) method. The micro-structure of membrane was adjusted by small molecules to improve mechanic strength and performance, involving 7 commercial ionic surfactant and a self-synthesized one, S20. S20 showed the best compatibility with SPAA6, which converted spherical phase into network of strip-like units in micro-structure of membrane. Meanwhile, average pore size of the membrane was narrowed from 4.271 nm to 3.391 nm, tested by BET method. Tensile strength of membrane was improved from 2.5 MPa to 2.9 MPa. Therefore, anionic dyes rejection and membrane stability were both improved. It actually demonstrated that molecular weight distribution of SPAA6 was crucial for micro-structure construction of membrane since S20 was the SPAA6 of low molecular weight. In blend solution filtration test, membrane MS2 (1:2 for S20:SPAA6) displayed 98.22% rejection to Congo Red (CR) acid and 96.18% NaCl permeation under 1 bar. It showed 80.18% rejection to chrome blue K (ABK) and 96.28% NaCl permeation. Both water permeance were higher than 3.5 L·m·h·bar. Membrane MS2 showed the potential of fractionation of dye and NaCl, which was promising in textile waste water treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.133908DOI Listing

Publication Analysis

Top Keywords

membrane
10
micro-structure membrane
8
molecular weight
8
membrane ms2
8
nacl permeation
8
low pressure
4
pressure modified
4
modified polyamide
4
polyamide membrane
4
membrane effective
4

Similar Publications

A Novel COL7A1 Mutation in a Patient With Dystrophic Epidermolysis Bullosa. Successful Treatment With Upadacitinib.

Clin Cosmet Investig Dermatol

January 2025

Department of Dermatology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People's Republic of China.

Dystrophic epidermolysis bullosa (DEB) is a heterogeneous and rare genetic skin disease caused by mutations in the gene, which encodes Type VII collagen. The absence or dysfunction of Type VII collagen can cause the dense lower layer of the basal membrane zone of the skin to separate from the dermis, leading to blister formation and various complications. In different DEB subtypes, the severity of the phenotype is associated, to some extent, with the outcome of Type VII collagen caused by mutations in the gene, which may be reduced in expression, remarkably reduced, or completely absent.

View Article and Find Full Text PDF

Chemical upcycling of polybutadiene into size controlled α,ω-dienes and diesters sequential hydrogenation and cross-metathesis.

Chem Sci

January 2025

Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven Celestijnenlaan 200F, Post Box 2454 3001 Leuven Belgium

Plastic waste conversion into valuable chemicals is a promising alternative to landfill or incineration. In particular, the chemical upcycling of polybutadiene rubber (PBR) could provide a renewable route towards highly desirable α,ω-dienes with varying chain lengths, which can find ample industrial application. While previous research has shown that the treatment of polybutadiene with a consecutive hydrogenation and ethenolysis reaction can afford long-chain α,ω-dienes, achieving precise control over the product chain length remains an important bottleneck.

View Article and Find Full Text PDF

Simulators allow junior otolaryngology residents to practice the delicate procedure of pressure equalization tube (PET) insertion. However, most simulators lack the ability to mimic the differing anatomic complexities between patients, such as variable external auditory canal (EAC) size. We developed a novel low-cost, medium-fidelity 3-dimensional-printed PET simulator with different EAC sizes to better reflect procedure complexity.

View Article and Find Full Text PDF

Generation and characterization of OX40-ligand fusion protein that agonizes OX40 on T-Lymphocytes.

Front Immunol

January 2025

Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.

OX40, a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed on the surface of activated T cells. Upon interaction with its cognate ligand, OX40L, OX40 transmits costimulatory signals to antigen-primed T cells, promoting their activation, differentiation, and survivalprocesses essential for the establishment of adaptive immunity. Although the OX40-OX40L interaction has been extensively studied in the context of disease treatment, developing a substitute for the naturally expressed membrane-bound OX40L, particularly a multimerized OX40L trimers, that effectively regulates OX40-driven T cell responses remains a significant challenge.

View Article and Find Full Text PDF

Introduction: HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!