Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report for the first time, a comparison of two approaches for artificially induced triploidy in zebrafish (Danio rerio) using cold shock and heat shock treatments. Of the two methods, heat shock treatment proved more effective with a triploid production rate of 100% in particular females. Subsequently, triploid zebrafish larvae were used as recipients for intraperitoneal transplantation of ovarian and testicular cells originating from vas:EGFP strain in order to verify their suitability for surrogate reproduction. Production of donor-derived sperm was achieved in 23% of testicular cell recipients and 16% of ovarian cell recipients, indicating the suitability of triploids as surrogate hosts for germ cell transplantation. Success of the transplantation was confirmed by positive GFP signal detected in gonads of dissected fish and stripped sperm. Germline transmission was confirmed by fertilization tests followed by PCR analysis of embryos with GFP specific primers. Reproductive success of germline chimera triploids evaluated as fertilization rate and progeny development was comparable to control groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2019.08.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!