Purpose: This study seeks to identify biological factors that may yield a therapeutic advantage of proton therapy versus photon therapy. Specifically, we address the role of nonhomologous end-joining (NHEJ) and homologous recombination (HR) in the survival of cells in response to clinical photon and proton beams.

Methods And Materials: We irradiated HT1080, M059K (DNA-PKcs), and HCC1937 human cancer cell lines and their isogenic counterparts HT1080-shDNA-PKcs, HT1080-shRAD51, M059J (DNA-PKcs), and HCC1937-BRCA1 (BRCA1 complemented) to assess cell clonogenic survival and γ-H2AX radiation-induced foci. Cells were irradiated with either clinically relevant photons or 1 of 3 proton linear energy transfer (LET) values.

Results: Our results indicate that NHEJ deficiency is more important in dictating cell survival than proton LET. Cells with disrupted HR through BRCA1 mutation showed increased radiosensitivity only for high-LET protons whereas RAD51 depletion showed increased radiosensitivity for both photons and protons. DNA double strand breaks, assessed by γ-H2AX radiation-induced foci, showed greater numbers after 24 hours in cells exposed to higher LET protons. We also observed that NHEJ-deficient cells were unable to repair the vast majority of double strand breaks after 24 hours.

Conclusions: BRCA1 mutation significantly sensitizes cells to protons, but not photons. Loss of NHEJ renders cells hypersensitive to radiation, whereas the relative importance of HR increases with LET across several cell lines. This may be attributable to the more clustered damage induced by higher LET protons, which are harder to repair through NHEJ. This highlights the importance of tumor biology in dictating treatment modality and suggests BRCA1 as a potential biomarker for proton therapy response. Our data also support the use of pharmacologic inhibitors of DNA repair to enhance the sensitivity to different radiation types, although this raises issues for normal tissue toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6872929PMC
http://dx.doi.org/10.1016/j.ijrobp.2019.08.011DOI Listing

Publication Analysis

Top Keywords

proton linear
8
linear energy
8
energy transfer
8
dictating cell
8
proton therapy
8
cell lines
8
γ-h2ax radiation-induced
8
radiation-induced foci
8
brca1 mutation
8
increased radiosensitivity
8

Similar Publications

Effects of Nicotine on the Thermodynamics and Phase Coexistence of Pulmonary Surfactant Model Membranes.

Membranes (Basel)

December 2024

Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil.

Phase separation is essential for membrane function, and alterations in phase coexistence by membrane-interacting molecules, such as nicotine, can impair membrane stability. With the increasing use of e-cigarettes, concerns have arisen about the impact of nicotine on pulmonary surfactants. Here, we used differential scanning calorimetry (DSC), molecular dynamics (MD) simulations, and electron spin resonance (ESR) to examine nicotine's effect on the phase coexistence of two surfactant models: pure DPPC and a DPPC/POPC/POPG mixture.

View Article and Find Full Text PDF

Assessing Lung Ventilation and Bronchodilator Response in Asthma and Chronic Obstructive Pulmonary Disease with F MRI.

Radiology

December 2024

From the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (B.J.P., M.A.N., C.W.H., A.J.S., P.E.T.); Newcastle Magnetic Resonance Centre, Health Innovation Neighbourhood, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom (B.J.P., M.A.N., C.W.H., P.E.T.); Pulmonary, Lung and Respiratory Imaging Sheffield, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom (A.M.M., J.M.W.); Department of Respiratory Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (I.F.); Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom (R.A.L.); Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (H.F.F., J.N.S.M.); and Insigneo Institute, University of Sheffield, Sheffield, United Kingdom (J.M.W.).

Background Pulmonary function tests are central to diagnosis and monitoring of respiratory diseases but do not provide information on regional lung function heterogeneity. Fluorine 19 (F) MRI of inhaled perfluoropropane permits quantitative and spatially localized assessment of pulmonary ventilation properties without tracer gas hyperpolarization. Purpose To assess regional lung ventilation properties using F MRI of inhaled perfluoropropane in participants with asthma, participants with chronic obstructive pulmonary disease (COPD), and healthy participants, including quantitative evaluation of bronchodilator response in participants with respiratory disease.

View Article and Find Full Text PDF

We introduce two water-soluble excited state intramolecular proton transfer (ESIPT) based fluorescent turn-on probes responding to inorganic polyphosphates. These ESIPT probes enable specific detection of short-chain inorganic polyphosphates over a range of different condensed phosphates. The probes are weakly emissive in their off-state due to the blocking of ESIPT by Cu coordination.

View Article and Find Full Text PDF

Acid-sensing ion channels (ASICs) are typically activated by acidic environments and contribute to nociception and synaptic plasticity. ASIC1a is the most abundant subunit in the central nervous system and forms homomeric channels permeable to Na and Ca , making it a compelling therapeutic target for acidotic pathologies including stroke and traumatic brain injury. However, a complete conformational library of human ASIC1a in its various functional states has yet to be described.

View Article and Find Full Text PDF

ORACLE: An analytical approach for T, T, proton density, and off-resonance mapping with phase-cycled balanced steady-state free precession.

Magn Reson Med

December 2024

Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

Purpose: To develop and validate a novel analytical approach simplifying , , proton density (PD), and off-resonance quantifications from phase-cycled balanced steady-state free precession (bSSFP) data. Additionally, to introduce a method to correct aliasing effects in undersampled bSSFP profiles.

Theory And Methods: Off-resonant-encoded analytical parameter quantification using complex linearized equations (ORACLE) provides analytical solutions for bSSFP profiles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!