Covalent inhibitors have emerged as an important drug class in recent years, largely due to their many unique advantages as compared to noncovalent inhibitors, including longer duration of action, lower prolonged systemic exposure, higher potency, and selectivity. However, the potential off-target toxicity of covalent inhibitors, particularly of irreversible covalent inhibitors, represents a great challenge in covalent drug development. Therefore, accurate calculation of protein covalent inhibitor reaction kinetics to guide the design of selective inhibitors would greatly benefit covalent drug discovery efforts. In the present paper, we present a computational method to calculate the relative reaction kinetics between congeneric irreversible covalent inhibitors and their protein receptors. The method combines density functional theory calculations of the transition state barrier height of the rate-limiting step for reaction between the warhead of the inhibitor and a single protein residue, and molecular-mechanics-based free energy calculations to account for the interactions between the ligand in the transition state and the protein environment. The method was tested on four pharmaceutically interesting irreversible covalent binding systems involving 28 ligands; the mean unsigned error (MUE) of the relative reaction rate for all pairs of ligands between the predictions and experimental results for these tested systems is 0.79 log unit. This is to our knowledge the first time where the reaction kinetics of protein irreversible covalent inhibition have been directly calculated with physics-based free energy calculation methods and transition state theory. We anticipate the outstanding accuracy demonstrated here across a broad range of target classes will have a strong impact on the design of selective covalent inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.9b00268 | DOI Listing |
J Med Chem
January 2025
Scorpion Therapeutics, 1 Winthrop Square, Boston, Massachusetts 02110, United States.
After L858R and ex19del epidermal growth factor receptor (EGFR) mutations, ex20ins mutations are the third most common class of driver-mutations in non-small cell lung cancer (NSCLC). Unfortunately, first-, second-, and third-generation EGFR tyrosine kinase inhibitors (TKIs) are generally ineffective for ex20ins patients due to insufficient mutant activity and selectivity over wild-type EGFR, leading to dose-limiting toxicities. While significant advances in recent years have been made toward identifying potent EGFR ex20ins mutant inhibitors, mutant vs wild-type EGFR selectivity remains a significant challenge.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
As an efficient, sustainable, and environmentally friendly semiconductor material, covalent organic frameworks (COFs) can generate hydrogen peroxide (HO) by photocatalysis, attracting wide attention in recent years. Herein, the effects of hydroxyl, methoxyl, and vinyl groups of imide-linked two-dimensional (2D) COFs on the photocatalytic production of HO were studied theoretically and experimentally. The introduction of vinyl groups greatly promotes the photogenerated charge separation and migration of COFs, providing more oxygen adsorption sites, stronger proton affinity, and lower intermediate binding energy, which effectively facilitates the rapid conversion of oxygen to HO.
View Article and Find Full Text PDFACS Mater Au
January 2025
Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.
Ionic gels (IGs), ionic liquids (ILs) dispersed in polymers, exhibit extremely low vapor pressure, electrochemical and thermal stability, and excellent mechanical characteristics; therefore, they are used for fabricating stretchable sensors, electrochemical transistors, and energy storage devices. Although such characteristics are promising for flexible and stretchable electronics, the mechanical stress-induced ruptured covalent bonds forming polymer networks cannot recover owing to the irreversible interaction between the bonds. Physical cross-linking via noncovalent bonds enables the interaction of polymers and ILs to form supramolecular IGs (SIGs), which exhibit favorable characteristics for wearable devices that conventional IGs with noncovalent bonds cannot achieve.
View Article and Find Full Text PDFFood Res Int
January 2025
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China. Electronic address:
The interaction between proteins and aroma compounds significantly impacts cheese flavor retention during processing. However, it is still unknown how cheese proteins and the aldehyde aroma compounds (AACs) interact. This study aims to clarify the interaction mechanisms between the AACs (benzaldehyde, 2-methylpropanal, 2-methylbutanal and 3-methylbutanal) and β-casein (β-CN) using SPME-GC/MS, multi-spectroscopy techniques, and molecular dynamics simulations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.
Targeted covalent inhibitors (TCIs) play an essential role in the fields of kinase research and drug discovery. TCI strategies to target more common amino acid side-chains have yet to be demonstrated. Targeting other amino acids would also expand the pharmaceutical industry's toolbox for targeting other tough-to-drug proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!