A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Human Microrobot Interface Based on Acoustic Manipulation. | LitMetric

Micro/nanorobotic systems capable of targeted transporting and releasing hold considerable promise for drug delivery, cellular surgery, biosensing, nano assembling, . However, on-demand precise control of the micro/nanorobot movement remains a major challenge. In particular, a practical interface to realize instant and customized interactions between human and micro/nanorobots, which is quite essential for developing next generation intelligent micro/nanorobots, has seldom been explored. Here, we present a human-microrobot user interface to perform direct and agile recognition of user commands and signal conversion for driving the microrobot. The microrobot platform is built based on locally enhanced acoustic streaming which could precisely transport microparticles and cells along a given pathway, while the interface is enabled by tuning the actuation frequency and time with different instructions and inputs. Our numerical simulations and experimental demonstrations illustrate that microparticles can be readily transported along the path by the acoustic robotic system, due to the vibration-induced locally enhanced acoustic streaming and resultant propulsion force. The acoustic robotic platform allows large-scale parallel transportation for microparticles and cells along given paths. The human microrobot interface enables the micromanipulator to response promptly to the users' commands input by typing or music playing for accurate transport. For example, the music tone of a playing melody is used for manipulating a cancer cell to a targeted position. The interface offers several attractive capabilities, including tunable speed and orientation, quick response, considerable delivery capacities, high precision and favorable controllability. We expect that such interface will work as a compelling and versatile platform for myriad potential scenarios in transportation units of microrobots, single cell analysis instruments, lab-on-chip systems, microfactories, .

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.9b04930DOI Listing

Publication Analysis

Top Keywords

human microrobot
8
microrobot interface
8
locally enhanced
8
enhanced acoustic
8
acoustic streaming
8
microparticles cells
8
acoustic robotic
8
interface
7
acoustic
5
interface based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!