Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Uveal melanoma (UM) is characterized by multiple chromosomal rearrangements and recurrent mutated genes. The aim of this study was to investigate if copy number variations (CNV) alone and in combination with other genetic and clinico-histopathological variables can be used to stratify for disease-free survival (DFS) in enucleated patients with UM.
Methods: We analyzed single nucleotide polymorphisms (SNP) array data of primary tumors and other clinical variables of 214 UM patients from the Rotterdam Ocular Melanoma Study (ROMS) cohort. Nonweighted hierarchical clustering of SNP array data was used to identify molecular subclasses with distinct CNV patterns. The subclasses associate with mutational status of BAP1, SF3B1, or EIF1AX. Cox proportional hazard models were then used to study the predictive performance of SNP array cluster-, mutation-, and clinico-histopathological data, and their combination for study endpoint risk.
Results: Five clusters with distinct CNV patterns and concomitant mutations in BAP1, SF3B1, or EIF1AX were identified. The sample's cluster allocation contributed significantly to mutational status of samples in predicting the incidence of metastasis during a median of 45.6 (interquartile range [IQR]: 24.7-81.8) months of follow-up (P < 0.05) and vice versa. Furthermore, incorporating all data sources in one model yielded a 0.797 C-score during 100 months of follow-up.
Conclusions: UM has distinct CNV patterns that correspond to different mutated driver genes. Incorporating clinico-histopathological, cluster and mutation data in the analysis results in good performance for UM-related DFS prediction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.18-24818 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!