Revealing fermionic quantum criticality from new Monte Carlo techniques.

J Phys Condens Matter

Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China.

Published: November 2019

This review summarizes recent developments in the study of fermionic quantum criticality, focusing on new progress in numerical methodologies, especially quantum Monte Carlo methods, and insights that emerged from recently large-scale numerical simulations. Quantum critical phenomena in fermionic systems have attracted decades of extensive research efforts, partially lured by their exotic properties and potential technology applications, and partially awakened by the profound and universal fundamental principles that govern these quantum critical systems. Due to the complex and non-perturbative nature, these systems face the most difficult and challenging problems in the study of modern condensed matter physics, and many important fundamental problems remain open. Recently, new developments in model design and algorithm improvements enabled unbiased large-scale numerical solutions to be achieved in the close vicinity of these quantum critical points, which paves a new pathway towards achieving controlled conclusions through combined efforts of theoretical and numerical studies, as well as possible theoretical guidance for experiments in heavy-fermion compounds, Cu-based and Fe-based superconductors, ultra-cold fermionic atomic gas, twisted graphene layers, etc, where signatures of fermionic quantum criticality exist.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ab3295DOI Listing

Publication Analysis

Top Keywords

fermionic quantum
12
quantum criticality
12
quantum critical
12
monte carlo
8
large-scale numerical
8
quantum
7
revealing fermionic
4
criticality monte
4
carlo techniques
4
techniques review
4

Similar Publications

Information Theoretical Analysis of Quantum Mixedness in a Finite Model of Interacting Fermions.

Entropy (Basel)

January 2025

CeBio-Departamento de Ciencias Básicas, Universidad Nacional del Noroeste Provincia de Buenos Aires (UNNOBA), CONICET, Junin 6000, Argentina.

In this study, we utilize information theory tools to investigate notable features of the quantum degree of mixedness (Cf) in a finite model of interacting fermions. This model serves as a simplified proxy for an atomic nucleus, capturing its essential features in a more manageable form compared to a realistic nuclear model, which would require the diagonalization of matrices with millions of elements, making the extraction of qualitative features a significant challenge. Specifically, we aim to correlate Cf with particle number fluctuations and temperature, using the paradigmatic Lipkin model.

View Article and Find Full Text PDF

Quantum materials governed by emergent topological fermions have become a cornerstone of physics. Dirac fermions in graphene form the basis for moiré quantum matter and Dirac fermions in magnetic topological insulators enabled the discovery of the quantum anomalous Hall (QAH) effect. By contrast, there are few materials whose electromagnetic response is dominated by emergent Weyl fermions.

View Article and Find Full Text PDF

Inspired by the success of graphene, two-dimensional (2D) materials have been at the forefront of advanced (opto-)nanoelectronics and energy-related fields owing to their exotic properties like sizable bandgaps, Dirac fermions, quantum spin Hall states, topological edge states, and ballistic charge carrier transport, which hold promise for various electronic device applications. Emerging main group elemental 2D materials, beyond graphene, are of particular interest due to their unique structural characteristics, ease of synthetic exploration, and superior property tunability. In this review, we present recent advances in atomic-scale studies of elemental 2D materials with an emphasis on synthetic strategies and structural properties.

View Article and Find Full Text PDF

A new method to perform complete active space second-order perturbation theory on top of large active spaces optimized with full configuration quantum Monte Carlo is presented. Computing the three- and Fock-contracted four-particle density matrix from imaginary-time-averaged wave functions is found to resolve fermionic positivity violations and to ensure numerical stability. The protocol is applied to [NiFe]-hydrogenase, [CuO]-oxidase and Fe-porphyrin model systems up to 26 electrons in 27 orbitals and benchmarked against DMRG-CASPT2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!