A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Low-Cost Beam-Scanning Second Harmonic Generation Microscope with Application for Agrochemical Development and Testing. | LitMetric

A low-cost second harmonic generation (SHG) microscope was constructed, and, for the first time, SHG microscopy was used for imaging agrochemical materials directly on the surface of common commercial crop leaves. The microscope uses a chromatically fixed (1560 nm) femtosecond fiber laser, a commercial 2D galvanometer mirror system, and a PCIe digital oscilloscope card, which together kept total instrument costs under $40 000 (USD), a significant decrease in cost and complexity from common systems (commercial and home-built) using tunable lasers and faster beam-scanning architectures. The figures of merit of the low-cost system still enabled a variety of measurements of agrochemical materials. Following confirmation of largely background-free SHG imaging of common crop leaves (soybean, maize, wheatgrass), SHG microscopy was used to image active ingredient crystallization after solution-phase deposition directly on the leaf surface, including at industrially relevant active ingredient concentrations (<0.05% w/w). Crystallization was also followed in real-time, with differences in crystallization time observed for different application procedures (spraying vs single droplet deposition). A strong dependency of active ingredient crystallization on the substrate was found, with an increased crystallization tendency observed on leaves vs on glass slides. Different crystal habits for the same active ingredient were also observed on different plant species. Finally, a model extended-release formulation was prepared, with a decrease in active ingredient crystallinity observed vs solution-phase deposition. These collective results demonstrate the need for making diagnostic measurements directly on the leaf surface and could help inform the next generation of pesticide products that ensure optimized agricultural output for a growing world population.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b02304DOI Listing

Publication Analysis

Top Keywords

second harmonic
8
harmonic generation
8
shg microscopy
8
agrochemical materials
8
crop leaves
8
active ingredient
8
low-cost beam-scanning
4
beam-scanning second
4
generation microscope
4
microscope application
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!