Cellular responses to external stimuli heavily rely on the set of receptors expressed at the cell surface at a given moment. Accordingly, the population of surface-expressed receptors is constantly adapting and subject to strict mechanisms of regulation. The paradigmatic example and one of the most studied trafficking events in biology is the regulated control of the synaptic expression of glutamate receptors (GluRs). GluRs mediate the vast majority of excitatory neurotransmission in the central nervous system and control physiological activity-dependent functional and structural changes at the synaptic and neuronal levels (e.g., synaptic plasticity). Modifications in the number, location, and subunit composition of surface expressed GluRs deeply affect neuronal function and, in fact, alterations in these factors are associated with different neuropathies. Presented here is a method to study GluR trafficking in dissociated hippocampal primary neurons. An "antibody-feeding" approach is used to differentially visualize GluR populations expressed at the surface and internal membranes. By labeling surface receptors on live cells and fixing them at different times to allow for receptors endocytosis and/or recycling, these trafficking processes can be evaluated and selectively studied. This is a versatile protocol that can be used in combination with pharmacological approaches or overexpression of altered receptors to gain valuable information about stimuli and molecular mechanisms affecting GluR trafficking. Similarly, it can be easily adapted to study other receptors or surface expressed proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743481 | PMC |
http://dx.doi.org/10.3791/59982 | DOI Listing |
Cell Mol Biol Lett
January 2025
PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
Synaptic vesicle (SV) trafficking toward the plasma membrane (PM) and subsequent SV maturation are essential for neurotransmitter release. These processes, including SV docking and priming, are co-ordinated by various proteins, such as SNAREs, Munc13 and synaptotagmin (Syt), which connect (tether) the SV to the PM. Here, we investigated how tethers of varying lengths mediate SV docking using a simplified mathematical model.
View Article and Find Full Text PDFmSphere
December 2024
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
Unlabelled: The eukaryotic CCR4-NOT deadenylase complex is a highly conserved regulator of mRNA metabolism that influences the expression of the complete transcriptome, representing a prime target for a generalist bacterial pathogen. We show that a translocated bacterial effector protein, PieF (Lpg1972) of , directly interacts with the CNOT7/8 nuclease module of CCR4-NOT, with a dissociation constant in the low nanomolar range. PieF is a robust inhibitor of the DEDD-type nuclease, CNOT7, acting in a stoichiometric, dose-dependent manner.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA.
The GluA1 subunit, encoded by the putative schizophrenia-associated gene GRIA1, is required for activity-regulated AMPA receptor (AMPAR) trafficking, and plays a key role in cognitive and affective function. The cytoplasmic, carboxy-terminal domain (CTD) is the most divergent region across AMPAR subunits. The GluA1 CTD has received considerable attention for its role during long-term potentiation (LTP) at CA1 pyramidal neuron synapses.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA.
Peroxynitrite (ONOO) is a highly reactive nitrogen species that can cause significant damage to proteins, lipids, and DNA. Various enzymes, including metalloenzymes, play crucial roles in reducing ONOO concentrations to protect cellular components. While the interaction of ONOO with heme proteins is well known, the reduction by Cu-containing proteins is less studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!