The expression of the transmembrane protein 25 gene (Tmem25) is strongly influenced by glutamate ionotropic receptor kainate type subunit 4, and its function remains unknown. Here, we showed that TMEM25 was primarily localized to late endosomes in neurons. Electrophysiological experiments suggested that the effects of TMEM25 on neuronal excitability were likely mediated by N-methyl-d-aspartate receptors. TMEM25 affected the expression of the N-methyl-d-aspartate receptor NR2B subunit and interacted with NR2B, and both were colocalized to late endosome compartments. TMEM25 induced acidification changes in lysosome compartments and accelerated the degradation of NR2B. Furthermore, TMEM25 expression was decreased in brain tissues from patients with epilepsy and epileptic mice. TMEM25 overexpression attenuated the behavioral phenotypes of epileptic seizures, whereas TMEM25 downregulation exerted the opposite effect. These results provide some insights into TMEM25 biology in the brain and the functional relationship between TMEM25 and epilepsy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715386PMC
http://dx.doi.org/10.1172/JCI122599DOI Listing

Publication Analysis

Top Keywords

tmem25
11
neuronal excitability
8
tmem25 expression
8
tmem25 modulates
4
modulates neuronal
4
excitability nmda
4
nmda receptor
4
receptor subunit
4
nr2b
4
subunit nr2b
4

Similar Publications

In wild-type cells, TMEM25 physically associates with EGFR monomer and suppresses the EGFR-mediated STAT3 phosphorylation, which results in the sequestration of unphosphorylated STAT3 in the cytoplasm. In TMEM cells, EGFR monomer phosphorylates STAT3 at the basal level.

View Article and Find Full Text PDF

Background: Transmembrane 25(TMEM25) stands out as a potential prognostic biomarker and therapeutic target in the realm of cancer, yet its precise mechanism of action within clear cell renal cell carcinoma (ccRCC) remains unclear.

Materials And Methods: Gene expression data and clinically relevant information extracted from The Cancer Genome Atlas (TCGA) and Gene expression omnibus (GEO) databases unveil the expression patterns of TMEM25 within renal clear cell carcinoma, which reveals its prognostic and diagnostic significance. The protein expression data is available via the Human Protein Atlas (HPA) database.

View Article and Find Full Text PDF

The tight junction (TJ) in epithelial cells is formed by integral membrane proteins and cytoplasmic scaffolding proteins. The former contains the claudin family proteins with four transmembrane segments, while the latter includes Par3, a PDZ domain-containing adaptor that organizes TJ formation. Here we show the single membrane-spanning protein TMEM25 localizes to TJs in epithelial cells and binds to Par3 via a PDZ-mediated interaction with its C-terminal cytoplasmic tail.

View Article and Find Full Text PDF

Cortical expansion has occurred during human brain evolution. By comparing human and mouse RNA-seq datasets, we found that transmembrane protein 25 (TMEM25) was much more highly expressed in human neural progenitors (NPCs). Overexpression of either human TMEM25 or mouse Tmem25 similarly promoted mouse NPC proliferation in vitro.

View Article and Find Full Text PDF

TMEM25 inhibits monomeric EGFR-mediated STAT3 activation in basal state to suppress triple-negative breast cancer progression.

Nat Commun

April 2023

State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China.

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor outcome and lacks of approved targeted therapy. Overexpression of epidermal growth factor receptor (EGFR) is found in more than 50% TNBC and is suggested as a driving force in progression of TNBC; however, targeting EGFR using antibodies to prevent its dimerization and activation shows no significant benefits for TNBC patients. Here we report that EGFR monomer may activate signal transducer activator of transcription-3 (STAT3) in the absence of transmembrane protein TMEM25, whose expression is frequently decreased in human TNBC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!