Protective effect and mechanism of alpha-lipoic acid on partial hepatic ischemia-reperfusion injury in adult male rats.

Physiol Res

The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

Published: October 2019

In order to reduce tissue damage caused by ischemia-reperfusion injury, this study aims to investigate the protective effect and mechanism of ?-lipoic acid on hepatic ischemia-reperfusion injury in rats. The bloodstream of rats was blocked in the left middle and left lateral liver lobes of the liver. Forty rats were randomly divided into two groups: treatment group and injury group. Rats were injected with either 25 mg/1 ml of alpha-lipoic acid (treatment group) or 1 ml of saline (injury group) into the caudal vein 15 min before hepatic ischemia-reperfusion. Rat serum alanine aminotransferase (GPT), glutathione (GSH) and superoxide dismutase (SOD) levels were examined at various time points (1, 3, 6 and 12 h) in both groups. Changes in nuclear factor kappa B P65 (NF-kappaB P65) expression in ischemia-reperfusion liver at various time points after reperfusion (1, 3, 6 and 12 h) were evaluated through immunohistochemistry assay. Changes in macrophage inflammatory protein-2 (MIP-2) mRNA and inducible nitric oxide synthase (iNOS) mRNA expression in ischemic reperfused rat livers were detected by RT-PCR. Serum GPT level was significantly higher in the injury group than in the treatment group (P<0.01). NF-kappaB P65, MIP-2 mRNA and iNOS mRNA expression in ischemic reperfused rat livers were significantly higher in the injury group than in the treatment group (P<0.01). Serum GSH and SOD levels were higher in the treatment group than in the injury group (P<0.01). Alpha-lipoic acid significantly reduced ischemia-reperfusion injury in rat livers. This may be associated to the direct scavenging of oxygen-free radicals, increased GSH production, and the activation of downstream media due to decreased NF-kappaB and GSH consumption.

Download full-text PDF

Source
http://dx.doi.org/10.33549/physiolres.934095DOI Listing

Publication Analysis

Top Keywords

hepatic ischemia-reperfusion
12
ischemia-reperfusion injury
12
treatment group
12
injury group
12
protective mechanism
8
alpha-lipoic acid
8
time points
8
injury
6
group
6
ischemia-reperfusion
5

Similar Publications

Remote ischemic conditioning (RIC), including pre-conditioning (RIPC, before the ischemic event), per-conditioning (RIPerC, during the ischemic event), and post-conditioning (RIPostC, after the ischemic event), protects the liver in animal hepatic ischemia-reperfusion injuries models. However, several questions regarding the optimal timing of intervention and administration protocols remain unanswered. Therefore, the preclinical evidence on RIC in the HIRI models was systematically reviewed and meta-analyzed in the present review to provide constructive and helpful information for future works.

View Article and Find Full Text PDF

Hepatic ischemia-reperfusion (I/R) injury frequently occurs during the perioperative phase of liver surgery. Inappropriate activation of STING signaling can trigger excessive inflammation response to aggravate hepatic I/R injury. Dimethyl fumarate (DMF) is an FDA-approved immunomodulatory drug used to treat multiple sclerosis and psoriasis due to its notable anti-inflammation properties.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is a common pathogenic situation that arises throughout all liver surgeries, including liver transplants. We aimed to compare the preventive effects of valsartan (VST) against valsartan + sacubitril (LCZ696) on hepatic injury caused by IRI. A total of thirty-six male Westar albino rats were split into six groups randomly: sham, IRI, VST + IRI, LCZ696 + IRI, VST, and LCZ696.

View Article and Find Full Text PDF

GRINA alleviates hepatic ischemia‒reperfusion injury-induced apoptosis and ER-phagy by enhancing HRD1-mediated ATF6 ubiquitination.

J Hepatol

January 2025

Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Lead contact. Electronic address:

Background & Aims: Hepatic ischemia‒reperfusion injury (HIRI) is a critical complication of liver surgery and transplantation that contributes significantly to severe organ failure. GRINA, a calcium-regulating endoplasmic reticulum (ER) protein, plays an essential role in controlling the unfolded protein response; however, its role in HIRI remains unclear. The aim of this study was to investigate the function of GRINA in HIRI and explore its potential as a therapeutic target.

View Article and Find Full Text PDF

Recipients often suffer from hyperlactatemia during liver transplantation (LT), but whether hyperlactatemia exacerbates hepatic ischemia-reperfusion injury (IRI) after donor liver implantation remains unclear. Here, the role of hyperlactatemia in hepatic IRI is explored. In this work, hyperlactatemia is found to exacerbate ferroptosis during hepatic IRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!