Sequence-Dependent Deviations of Constrained DNA from Canonical B-Form.

Nano Lett

Department of Physics and the Russell Berrie Nanotechnology Institute , Technion - Israel Institute of Technology, Haifa 3200003 , Israel.

Published: September 2019

Decades of crystallographic and NMR studies have produced canonical structural models of short DNA. However, no experimental method so far has been able to test these models in vivo, where DNA is long and constrained by interactions with membranes, proteins, and other molecules. Here, we employ high-resolution frequency-modulation AFM to image single long poly(dA)-poly(dT), poly(dG)-poly(dC), and lambda DNA molecules interacting with an underlying substrate that emulates the effect of biological constraints on molecular structure. We find systematic sequence-dependent variations in groove dimensions, indicating that the structure of DNA subject to realistic interactions may differ profoundly from canonical models. These findings highlight the value of AFM as a unique, single molecule characterization tool.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.9b02863DOI Listing

Publication Analysis

Top Keywords

dna
5
sequence-dependent deviations
4
deviations constrained
4
constrained dna
4
dna canonical
4
canonical b-form
4
b-form decades
4
decades crystallographic
4
crystallographic nmr
4
nmr studies
4

Similar Publications

Pathological diagnosis of central nervous system tumours in adults: what's new?

Pathology

December 2024

Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.

In the course of the last decade, the pathological diagnosis of many tumours of the central nervous system (CNS) has transitioned from a purely histological to a combined histological and molecular approach, resulting in a more precise 'histomolecular diagnosis'. Unfortunately, translation of this refinement in CNS tumour diagnostics into more effective treatment strategies is lagging behind. There is hope though that incorporating the assessment of predictive markers in the pathological evaluation of CNS tumours will help to improve this situation.

View Article and Find Full Text PDF

Objective: To study measures of endothelial health, cardiovascular risk, and cellular aging between PCOS patients and a reproductive age normative cohort.

Design: Cross-sectional study.

Subjects: Community-based PCOS patients and a normative ovarian aging cohort as controls, aged 45 or younger at the time of evaluation.

View Article and Find Full Text PDF

c-FLIP/Ku70 complex; A potential molecular target for apoptosis induction in hepatocellular carcinoma.

Arch Biochem Biophys

January 2025

Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden. Electronic address:

Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide and the most common form of liver cancer. Despite global efforts toward early diagnosis and effective treatments, HCC is often diagnosed at advanced stages, where conventional therapies frequently lead to resistance and/or high recurrence rates. Therefore, novel biomarkers and promising medications are urgently required.

View Article and Find Full Text PDF

To help guide treatment decisions and clinical trial matching, tumor genomic profiling is an essential precision oncology tool. Liquid biopsy, a complementary approach to tissue testing, can assess tumor-specific DNA alterations circulating in the blood. Labcorp Plasma Complete is a next-generation sequencing, cell-free DNA comprehensive genomic profiling test that identifies clinically relevant somatic variants across 521 genes in advanced and metastatic solid cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!