Chemoinformatic Approaches To Predict the Viscosities of Ionic Liquids and Ionic Liquid-Containing Systems.

Chemphyschem

LAQV, Requimte, Departamento de Química Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Faculdade de Ciências e Tecnologia, 2829-516, Caparica, Portugal.

Published: November 2019

Modelling, predicting, and understanding the factors influencing the viscosities of ionic liquids and related mixtures are sequentially checked in this work. The molecular maps of atom-level properties (MOLMAP codification system) is adapted for a straightforward inclusion of ionic liquids and mixtures containing ionic liquids. Random Forest models have been tested in this context and an optimal model was selected. The interpretability of the selected Random Forest model is highlighted with selected structural features that might contribute to identify low viscosities. The constructed model is able to recognize the influence of different structural variables, temperature, and pressure for a correct classification of the different systems. The codification and interpretation systems are highlighted in this work.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201900593DOI Listing

Publication Analysis

Top Keywords

ionic liquids
16
viscosities ionic
8
liquids mixtures
8
random forest
8
ionic
5
chemoinformatic approaches
4
approaches predict
4
predict viscosities
4
liquids
4
liquids ionic
4

Similar Publications

A cost-effective strategy is reported utilizing ionic liquid (IL), 1-hexyl-3-methylimidazolium bisulfate ([HMIM] HSO), to delaminate TiC MXene, thereby enhancing its efficiency in electrocatalyzing tryptophan (Trp) oxidation. The positively charged IL effectively intercalates within the negatively charged MXene layers, fostering structural stability through π-π stacking and electrostatic interactions. Consequently, the resulting IL-TiC composite not only maintained the inherent electronic conductivity of TiC but also significantly augmented its electrocatalytic prowess.

View Article and Find Full Text PDF

Deep eutectic solvents (DES) and ionic liquids (ILs), specifically natural deep eutectic solvents (NADES), allow for the extraction of natural products using environmentally friendly solvents instead of organic solvents. Here we describe the extraction of anthocyanins from a medicinal plant using NADES prepared either by evaporating method or heating-and-stirring method with the help of ultrasound-assisted extraction (UAE). The NADES extract can be qualified by the high-performance liquid chromatography (HPLC) method, which can separate the component of NADES with target compounds from medicinal plant.

View Article and Find Full Text PDF

Thermal-Sensitive Artificial Ionic Skin with Environmental Stability and Self-Healing Property.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.

Wearable temperature-sensitive electronic skin enables robots to rapidly detect environmental changes and respond intelligently, thereby reducing temperature-related mechanical failures. Additionally, this temperature-sensitive skin can measure and record the temperature of external objects, broadening its potential applications in the medical field. In this study, we designed a thermally sensitive artificial ionic skin using ionic liquids (ILs) as solvents and carbon nanotubes (CNTs) as thermally conductive fillers.

View Article and Find Full Text PDF

Molecular dynamics simulations of the structure and dynamics in mixtures of ionic liquids and alcohols.

Phys Chem Chem Phys

January 2025

Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran.

Molecular dynamics simulations were conducted on mixtures of ionic liquids (ILs) and alcohols, specifically methanol, ethanol, and 1-propanol. Two different ILs, [Mmim][MeSO] and [Bmim][MeSO], were used with varying alcohol mole fractions to investigate the impact of alkyl chain length of cations, alcohol types, and alcohol concentrations on different structural and dynamic properties. Unique characteristics of the ILs were observed due to the varying polarity of solvents and the creation of diverse local environments surrounding the ILs.

View Article and Find Full Text PDF

The adoption of carbon capture, utilization, and storage (CCUS) technology is increasingly prevalent, driven by the global initiative to conserve energy and reduce emissions. Nevertheless, CCUS has the potential to induce corrosion in equipment, particularly in high-pressure environments containing carbon dioxide (CO). Therefore, anti-corrosion protection is necessary for the metal utilized for CO production and storage equipment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!