Background: Resting-state functional neuroimaging captures large-scale network organization; whether this organization is intact or disrupted during adolescent development across the psychosis spectrum is unresolved. We investigated the integrity of network organization in psychosis spectrum youth and those with first episode psychosis (FEP) from late childhood through adulthood.
Methods: We analyzed data from Philadelphia Neurodevelopmental Cohort (PNC; typically developing = 450, psychosis spectrum = 273, 8-22 years), a longitudinal cohort of typically developing youth (LUNA; N = 208, 1-3 visits, 10-25 years), and a sample of FEP (N = 39) and matched controls (N = 34). We extracted individual time series and calculated correlations from brain regions and averaged them for 4 age groups: late childhood, early adolescence, late adolescence, adulthood. Using multiple analytic approaches, we assessed network stability across 4 age groups, compared stability between controls and psychosis spectrum youth, and compared group-level network organization of FEP to controls. We explored whether variability in cognition or clinical symptomatology was related to network organization.
Results: Network organization was stable across the 4 age groups in the PNC and LUNA typically developing youth and PNC psychosis spectrum youth. Psychosis spectrum and typically developing youth had similar functional network organization during all age ranges. Network organization was intact in PNC youth who met full criteria for psychosis and in FEP. Variability in cognitive functioning or clinical symptomatology was not related to network organization in psychosis spectrum youth or FEP.
Discussion: These findings provide rigorous evidence supporting intact functional network organization in psychosis risk and psychosis from late childhood through adulthood.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442350 | PMC |
http://dx.doi.org/10.1093/schbul/sbz053 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!