A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prescribing Zonally Asymmetric Ozone Climatologies in Climate Models: Performance Compared to a Chemistry-Climate Model. | LitMetric

Three different methods of specifying ozone in an atmosphere-only version of the HadGEM3-A global circulation model are compared to the coupled chemistry configuration of this model. These methods include a specified zonal-mean ozone climatology, a specified 3-D ozone climatology, and a calculated-asymmetry scheme in which a specified zonal-mean ozone field is adapted online to be consistent with dynamically produced zonal asymmetries. These simulations all use identical boundary conditions and, by construction, have the same climatological zonal-mean ozone, that of the coupled chemistry configuration of the model. Prescribing ozone, regardless of scheme, results in a simulation which is 3-4 times faster than the coupled chemistry-climate model (CCM). Prescribing climatological zonal asymmetries leads to a vortex which is the correct intensity but which is systematically displaced over regions with lower prescribed ozone. When zonal asymmetries in ozone are free to evolve interactively with model dynamics, the modeled wintertime stratospheric vortex shape and mean sea level pressure patterns closely resemble that produced by the full CCM in both hemispheres, in terms of statistically significant differences. Further, we separate out the two distinct pathways by which zonal ozone asymmetries influence modeled dynamics. We present this interactive-ozone zonal-asymmetry scheme as an inexpensive tool for accurately modeling the impacts of dynamically consistent ozone fields as seen in a CCM which ultimately influence mean sea level pressure and tropospheric circulation (particularly during wintertime in the Northern Hemisphere, when ozone asymmetries are generally largest), without the computational burden of simulating interactive chemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686983PMC
http://dx.doi.org/10.1029/2018MS001478DOI Listing

Publication Analysis

Top Keywords

ozone
12
zonal-mean ozone
12
zonal asymmetries
12
chemistry-climate model
8
coupled chemistry
8
chemistry configuration
8
configuration model
8
ozone climatology
8
sea level
8
level pressure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!