Fate and behaviour of veterinary sulphonamides under denitrifying conditions.

Sci Total Environ

Brno University of Technology, Faculty of Civil Engineering, Institute of Chemistry, Žižkova 17, 602 00 Brno, Czech Republic. Electronic address:

Published: December 2019

Antibiotics are among the most widely administered drugs in the growing animal food industry. Of all the antibiotics approved for agriculture, sulphonamides are of particular interest. Their spectrum of activity is broad, affecting gram-positive, gram-negative, and many protozoal organisms, and they have been used for the treatment of a wide variety of animals. Animal manure is one of primary sources of soil contamination by sulphonamides. As they have a low soil sorption potential and are therefore highly mobile in soil, they can be transported to groundwater. In the present study, papers dealing with the fate and behaviour of veterinary sulphonamides under denitrifying conditions often arising in the subsurface are reviewed. Veterinary sulphonamide-exposed conditions can result in either inhibition or stimulation of the denitrification process owing to their toxicity or stress for denitrifiers. The effect of sulphonamides on individual denitrification steps is unbalanced, which can cause accumulation of process intermediates (dinitrogen oxide, nitrites). Although research results related to veterinary sulphonamide biodegradation in a nitratereducing environment show great variety, they indicate that these compounds are biodegradable under denitrifying conditions, that their biodegradation fits the first-order kinetics model, and that microbial action is the main mechanism of their dissipation. Regarding biodegradation pathways, research to date has only focused on sulfamethoxazole. Its degradation is driven by the presence of nitrous acid, which is formed from nitrites generated by the denitrification process as an intermediate product. Nevertheless, sulfamethoxazole degradation is abiotic, meaning that it does not participate in the denitrifying metabolism. For the formation of sulfamethoxazole transformation products, including its nitro, nitroso and desamino derivatives, the presence of the primary aromatic amine group is key. As this functional group is common for all sulphonamides, it can be assumed that these transformation products are also involved in the degradation pathways of other sulphonamides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.133824DOI Listing

Publication Analysis

Top Keywords

denitrifying conditions
12
fate behaviour
8
behaviour veterinary
8
veterinary sulphonamides
8
sulphonamides denitrifying
8
denitrification process
8
sulfamethoxazole degradation
8
transformation products
8
sulphonamides
7
veterinary
4

Similar Publications

Bacterial community dynamics in a biofilm-based process after electro-assisted Fenton pre-treatment of real olive mill wastewater.

Bioresour Technol

January 2025

Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy. Electronic address:

In this work, the effect of the electro-assisted Fenton (EAF) process on the bacterial community of a moving bed biofilm reactor (MBBR) for olive mill wastewater (OMW) co-treatment with urban wastewater (UWW) was investigated. According to metagenomic analysis, pre-treatment by EAF, while removing total phenols (TPHs) up to 84 % ± 3 % and improving biodegradability of OMW from 0.38 to 0.

View Article and Find Full Text PDF

Effective denitrification from landfill leachate using magnetic PVA/CMC/DE carrier immobilized microorganisms.

Waste Manag

January 2025

Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China.

Ammonia nitrogen (NH-N) discharge has caused eutrophication of water bodies and harm to humans and organisms. In this work, polyvinyl alcohol (PVA), sodium carboxymethyl cellulose (CMC), diatomite (DE), and FeO were used to prepare magnetic immobilized carriers by encapsulating microorganisms for the treatment of NH-N wastewater. The response surface methodology was used to explore the optimal ratio of the immobilized carriers.

View Article and Find Full Text PDF

Dissimilatory nitrate reduction pathways drive high nitrous oxide emissions and nitrogen retention under the flash drought in the largest freshwater lake in China.

Water Res

December 2024

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China. Electronic address:

Flash drought (FD) events induced by climate change may disrupt the normal hydrological regimes of floodplain lakes and affect the plant-microbe mediated dissimilatory nitrate reduction (DNR), i.e., denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA), thus having important consequences for nitrous oxide (NO) emissions and nitrogen (N) retention.

View Article and Find Full Text PDF

Elevated concentrations of pharmaceutically active compounds (PhACs) in the water bodies are posing a serious threat to the aquatic microbiota and other organisms. In this context, anaerobic ammonium oxidizing (anammox) bacteria carry a great potential to degrade PhACs through their innate metabolic pathways. This study investigates the influence of short-term exposure to lower and higher concentrations (0.

View Article and Find Full Text PDF

Population growth in coastal areas increases nitrogen inputs to receiving waterways and degrades water quality. Wetland habitats, including floodplain forests and marshes, can be effective nitrogen sinks; however, little is known about the effects of chronic point source nutrient enrichment on sediment nitrogen removal in tidally influenced coastal systems. This study characterizes enrichment patterns in two tidal systems affected by wastewater treatment facility (WWTF) effluent and assesses the impact on habitat nitrogen removal via denitrification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!