Differences in spinal moments, kinematics and pace during single-task and combined manual material handling jobs.

Appl Ergon

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer Sheva, Israel; Institute of Agricultural Engineering, Agricultural Research Organization, Bet Dagan, Israel.

Published: November 2019

This study compared the spinal moments (i.e., peak and cumulative moments acting on the L5/S1 joint), kinematics (i.e., peak trunk and knee angles) and work pace of workers, when either removing a box from a shelf or depositing a box on a shelf, under two conditions: as a single task or as part of a combined task. An experiment was conducted, in which the subjects performed the tasks and were recorded using a motion capture system. An automated program was developed to process the motion capture data. The results showed that, when the removing and depositing tasks were performed as part of a combined task (rather than as single tasks), subjects experienced smaller peak and cumulative spinal moments and they performed the tasks faster. The results suggest that investigations into the separate tasks that comprise a combination have a limited ability to predict kinematics and kinetics during the combined job.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apergo.2019.06.002DOI Listing

Publication Analysis

Top Keywords

spinal moments
12
peak cumulative
8
box shelf
8
combined task
8
performed tasks
8
motion capture
8
tasks
5
differences spinal
4
moments
4
moments kinematics
4

Similar Publications

Background: Functional electrical stimulation-assisted rowing (FES rowing) is a rehabilitation exercise used to prevent disuse osteoporosis, which is common in people with spinal cord injury (SCI). However, its effect on bone loss prevention varied in SCI patients, potentially due to inconsistent loading. This study investigates the effect of ergometer setup and rowing speed on lower extremity loading during rowing.

View Article and Find Full Text PDF

Development and biomechanical evaluation of a 3D printed analogue of the human lumbar spine.

3D Print Med

January 2025

Musculoskeletal Biomechanics Research Lab, Department of Mechanical Engineering, McGill University, 845 Sherbrooke St. W (163), Montréal, QC, H3A 0C3, Canada.

Background: There exists a need for validated lumbar spine models in spine biomechanics research. Although cadaveric testing is the current gold standard for spinal implant development, it poses significant issues related to reliability and repeatability due to the wide variability in cadaveric physiologies. Moreover, there are increasing ethical concerns with human dissection practices.

View Article and Find Full Text PDF

While active back-support exoskeletons can reduce mechanical loading of the spine, current designs include only one pair of actuated hip joints combined with a rigid structure between the pelvis and trunk attachments, restricting lumbar flexion and consequently intended lifting behavior. This study presents a novel active exoskeleton including actuated lumbar and hip joints as well as subject-specific exoskeleton control based on a real-time active low-back moment estimation. We evaluated the effect of exoskeleton support with different lumbar-to-hip (L/H) support ratios on spine loading, lumbar kinematics, and back muscle electromyography (EMG).

View Article and Find Full Text PDF

A Novel Dynamic Growth Rod Inducing Spinal Growth Modulation for the Correction of Spinal Deformities.

JOR Spine

March 2025

Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China.

Background: Growth rods are the gold standard for treating early-onset scoliosis (EOS). However, current treatments with growth rods do not optimize spinal growth in EOS patients, and frequent distraction surgeries significantly increase complications, imposing considerable economic and psychological burdens on patients. An improved growth rod is urgently required to address the need for dynamic growth and external regulation.

View Article and Find Full Text PDF

Background: Transforaminal lumbar interbody fusion (TLIF) surgery has become increasingly popular in the surgical treatment of lumbar degenerative diseases. The optimal structure for stable double-segment fixation remains unclear.

Objective: To compare the biomechanical changes of unilateral fixation versus bilateral fixation in patients with lumbar degeneration undergoing double-segment TLIF surgery, and to explore the stability and feasibility of unilateral double-segment fixation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!