Sensor data fusion for responsive high resolution ultrasonic temperature measurement using piezoelectric transducers.

Ultrasonics

Department Engineering and Maths, Sheffield Hallam University, Howard str, Sheffield S1 1WB, UK. Electronic address:

Published: November 2019

Ultrasonic temperature measurement allows for responsive measurements across an entire ultrasonic pathway, unlike most conventional temperature sensors that respond to the temperature at the point of their placement only after a notable response time. The high cost of required ultrasonic instrumentation can be reduced substantially by using ultrasonic oscillating temperature sensors (UOTS) consisting of inexpensive narrowband piezo transducers and driving electronics. An UOTS produces sustained oscillations at a frequency that relates to the temperature of the medium between the transducers. The existence of thermal hysteresis in UOTS readings, observed experimentally and apparently related to the fundamental properties of piezoelectric materials, makes conversion of the output frequency readings to the temperature values ambiguous. This makes it complicated to calibrate and use UOTS on their own. In the reported experiment (heating, then naturally cooling of a water vessel equipped with both UOTS and conventional sensors), this hysteresis was solved by fusing UOTS data with conventional temperature sensor readings. As the result, the combination of one UOTS plus one conventional reference sensor allowed improving both the temperature resolution and responsiveness of the latter and ambiguity of the readings of the former. Data fusion effectively led to calibrating the UOTS at every change of the conventional sensor's reading, removing any concerns related to the thermal expansion/contraction of the ultrasonic pathway itself and/or hysteresis of piezoelectric transducers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2019.105969DOI Listing

Publication Analysis

Top Keywords

temperature
9
data fusion
8
ultrasonic temperature
8
temperature measurement
8
piezoelectric transducers
8
ultrasonic pathway
8
conventional temperature
8
temperature sensors
8
uots
8
uots conventional
8

Similar Publications

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

Background: Cold agglutinin disease (CAD) is an autoimmune hemolytic anemia that induces blood coagulation and hemolysis upon exposure to cold temperatures. Strict temperature control is essential to mitigate these effects, especially during surgical procedures where hypothermia is possible.

Case Presentation: A 57-year-old male, 165 cm and 72 kg, diagnosed with CAD, underwent cerebral vascular anastomosis.

View Article and Find Full Text PDF

This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber.

View Article and Find Full Text PDF

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Assessing Changes in Permethrin Toxicity to Juvenile Inland Silversides (Menidia beryllina) Under Different Temperature Scenarios.

Arch Environ Contam Toxicol

January 2025

Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA.

Aquatic systems are impacted by temperature fluctuations which can alter the toxicity of pesticides. Increased temperatures related to climate change have elevated pest activity, resulting in an escalation of pesticide use. One such pesticide class, pyrethroids, has replaced the use of several banned pesticides due to its low mammalian toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!