Phoenixin (PNX) is a recently discovered neuropeptide which modulates appetite, pain sensation and neurons of the reproductive system in the central nervous system. PNX is also detectable in the circulation and in peripheral tissues. Recent data suggested that PNX blood levels positively correlate with body weight as well as nutritional status suggesting a potential role of this peptide in controlling energy homeostasis. PNX is detectable in endocrine pancreas, however it is unknown whether PNX regulates insulin biosynthesis or secretion. Using insulin producing INS-1E cells and isolated rat pancreatic islets we evaluated therefore, whether PNX controls insulin expression, secretion and cell proliferation. We identified PNX in pancreatic alpha as well as in beta cells. Secretion of PNX from pancreatic islets was stimulated by high glucose. PNX stimulated insulin mRNA expression in INS-1E cells. Furthermore, PNX enhanced glucose-stimulated insulin secretion in INS-1E cells and pancreatic islets in a time-dependent manner. Stimulation of insulin secretion by PNX was dependent upon cAMP/Epac signalling, while potentiation of cell growth and insulin mRNA expression was mediated via ERK1/2- and AKT-pathway. These results indicate that PNX may play a role in controlling glycemia by interacting with pancreatic beta cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamcr.2019.118533 | DOI Listing |
Cells
November 2024
Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia.
Sarco/endoplasmic reticulum Ca-ATPase (SERCA) is an important regulatory protein responsible for maintaining calcium homeostasis within cells. Impairment of SERCA associated with activity/expression decrease has been implicated in multiple chronic conditions, including cardiovascular diseases, diabetes, cancer, neurodegenerative diseases, and skeletal muscle pathologies. Natural polyphenols have been recognized to interact with several target proteins involving SERCA.
View Article and Find Full Text PDFFEBS J
November 2024
Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
Type 1 diabetes (T1D) is characterized by immune cell infiltration in the islets of Langerhans, leading to the destruction of insulin-producing beta cells. This destruction is driven by secreted cytokines and cytotoxic T cells inducing apoptosis in beta cells. Butyrate, a metabolite produced by the gut microbiota, has been shown to have various health benefits, including anti-inflammatory and anti-diabetic effects.
View Article and Find Full Text PDFPLoS One
November 2024
Department of Experimental Medical Sciences, Unit of Medical Protein Science, Lund University, Lund, Sweden.
Apolipoprotein A-I (ApoA-I), the primary component of high-density lipoprotein (HDL) cholesterol primes β-cells to increase insulin secretion, however, the mechanisms involved are not fully defined. Here, we aimed to confirm ApoA-I receptors in β-cells and delineate ApoA-I-receptor pathways in β-cell insulin output. An LRC-TriCEPS experiment was performed using the INS-1E rat β-cell model and ApoA-I for unbiased identification of ApoA-I receptors.
View Article and Find Full Text PDFPharm Dev Technol
December 2024
Department of Pharmaceutical Technology, Baskent University Faculty of Pharmacy, Ankara, Turkey.
Exendin-4 (ex-4) is a peptide molecule that regulates blood glucose levels without causing hypoglycemia by providing insulin secretion from beta cells in the pancreas. Self-nanoemulsifying drug delivery systems (SNEDDS) attract attention for oral administration of therapeutic peptide/proteins because they protect therapeutic peptide/proteins from the gastric environment, reduce changes due to food effects, are easy to prepare and scale-up. Ex-4 has no commercial form that can be administered orally.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200030, China.
Defective glucose-stimulated insulin secretion (GSIS) and β-cell senescence are hallmarks in diabetes. The mitochondrial enzyme pyruvate carboxylase (PC) has been shown to promote GSIS and β-cell proliferation in the clonal β-cell lines, yet its physiological relevance remains unknown. Here, we provide animal and human data showing a role of PC in protecting β-cells against senescence and maintaining GSIS under different physiological and pathological conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!