To clarify the mechanism of gravity-controlled polar auxin transport, we conducted the International Space Station (ISS) experiment "Auxin Transport" (identified by NASA's operation nomenclature) in 2016 and 2017, focusing on the expression of genes related to auxin efflux carrier protein PsPIN1 and its localization in the hook and epicotyl cells of etiolated Alaska pea seedlings grown for three days in the dark under microgravity (μg) and artificial 1 g conditions on a centrifuge in the Cell Biology Experiment Facility (CBEF) in the ISS, and under 1 g conditions on Earth. Regardless of gravity conditions, the accumulation of PsPIN1 mRNA in the proximal side of epicotyls of the seedlings was not different, but tended to be slightly higher as compared with that in the distal side. 2,3,5-Triiodobenzoic acid (TIBA) also did not affect the accumulation of PsPIN1 mRNA in the proximal and distal sides of epicotyls. However, in the apical hook region, TIBA increased the accumulation of PsPIN1 mRNA under μg conditions as compared with that under artificial 1 g conditions in the ISS. The accumulation of PsPIN1 proteins in epicotyls determined by western blotting was almost parallel to that of mRNA of PsPIN1. Immunohistochemical analysis with a specific polyclonal antibody of PsPIN1 revealed that a majority of PsPIN1 in the apical hook and subapical regions of the seedlings grown under artificial 1 g conditions in the ISS localized in the basal side (rootward) of the plasma membrane of the endodermal tissues. Conversely, in the seedlings grown under μg conditions, localization of PsPIN1 was greatly disarrayed. TIBA substantially altered the cellular localization pattern of PsPIN1, especially under μg conditions. These results strongly suggest that the mechanisms by which gravity controls polar auxin transport are more likely to be due to the membrane localization of PsPIN1. This physiologically valuable report describes a close relationship between gravity-controlled polar auxin transport and the localization of auxin efflux carrier PsPIN1 in etiolated pea seedlings based on the μg experiment conducted in space.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lssr.2019.07.001DOI Listing

Publication Analysis

Top Keywords

polar auxin
16
auxin transport
16
1 g conditions
16
accumulation pspin1
16
pspin1
13
localization pspin1
12
pea seedlings
12
seedlings grown
12
artificial 1 g
12
pspin1 mrna
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!