Neural stem cells and the secreted proteins TIMPs ameliorate UVB-induced skin photodamage.

Biochem Biophys Res Commun

School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. Electronic address:

Published: October 2019

UV-induced skin damage is involved in ROS overproduction and the overexpression of matrix metalloproteinases (MMPs), which are inhibited by TIMPs (tissue inhibitor of neural stem cells (NSCs)). These proteins may be associated with skin regeneration through the activation of TIMP proteins, but there have been no reports of treatment of skin photodamage using NSCs and their secreted proteins TIMP-1 and TIMP-2. Here we investigated the photoprotective role of NSCs and their TIMP proteins for the inhibition of UVB-irradiation damage in fibroblasts in SKH-1 mice. SKH-1 hairless mice were divided into three groups (n = 4 per group): normal, treatment, and control groups. The latter two groups were dorsally exposed to UVB irradiation for 12 weeks. After UVB irradiation, treatments with NSC-CM and its secreted factors TIMP-1 and TIMP-2, markedly ameliorated the photodamage triggered by the increase in MMP expression and activity through ROS production, and the subsequent activation of the NF-κB pathway in UVB-irradiated fibroblasts and the treatment mouse group. In addition, the topical application of NSC-CM to mice in the treatment group after irradiation clearly inhibited the expression of γ-H2AX, a DNA damage marker, through the activation of the DNA repair enzyme Rad50. These results demonstrate that NSC-CM or TIMPs proteins can ameliorate skin photodamage induced by UVB-irradiation in in vitro and in vivo systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.08.068DOI Listing

Publication Analysis

Top Keywords

skin photodamage
12
neural stem
8
stem cells
8
secreted proteins
8
timp proteins
8
timp-1 timp-2
8
uvb irradiation
8
proteins
6
skin
5
cells secreted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!