Integrated systems with appropriate bio-filters can be used to treat aquaculture effluents. However, the information on bio-filters that alters the ecological functions of the bacterioplankton community (BC) in biodegradation of the aquaculture effluents remains controversial. In this study, we implemented a comprehensive restoration technology combined with bio-filters [biofilm, clam (Tegillarca granosa), and macrophytes (Spartina anglica)] to investigate their influence on the stability of the BC and nutrient removal. We found that the diversity of BC was linked with biogeochemical factors in processing and upcycling nitrogen-rich effluents into high-value biomass. The BC exhibited significant distinct patterns in the bio-filter areas. Potential biomarkers for constrained harmfully algae-bacteria (Nitriliruptoraceae, Bacillales, and Rhodobacteraceae) and nutrient removal were significantly higher in the bio-filters areas. The bio-filters significantly promoted the restoration effects of N and P balance by reducing 82.34% of total nitrogen (TN) and 81.64% of total phosphorus (TP) loads at the water interface. The main mechanisms for TN and TP removal and nutrient transformation were achieved by assimilation and absorption by the emergent macrophytes (Spartina anglica). The bio-filters significantly influenced the biodegradability and resolvability of particulate organic matter through ammonification, nitrification, and denitrification of microbes, which meliorated the nutrient removal. Beside bio-filter effects, the BC was significantly controlled by abiotic factors [nitrate (NO-N), dissolved oxygen (DO), total nitrogen (TN), and water temperature (WT)], and biotic factors (chlorophyll ɑ and green algae). Our study revealed that the co-existence system with bio-filters may greatly improve our understanding on the ecological functions of the BC in aquaculture systems. Overall, combined bio-filters provide an opportunity for the development of efficient and optimized aquaculture wastewater treatment technology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2019.113035DOI Listing

Publication Analysis

Top Keywords

nutrient removal
12
bacterioplankton community
8
aquaculture wastewater
8
bio-filters
8
aquaculture effluents
8
ecological functions
8
combined bio-filters
8
macrophytes spartina
8
total nitrogen
8
aquaculture
5

Similar Publications

Melanoma-derived extracellular vesicles transfer proangiogenic factors.

Oncol Res

January 2025

Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, 30-387, Poland.

Angiogenesis, the expansion of pre-existing vascular networks, is crucial for normal organ growth and tissue repair, but is also involved in various pathologies, including inflammation, ischemia, diabetes, and cancer. In solid tumors, angiogenesis supports growth, nutrient delivery, waste removal, and metastasis. Tumors can induce angiogenesis through proangiogenic factors including VEGF, FGF-2, PDGF, angiopoietins, HGF, TNF, IL-6, SCF, tryptase, and chymase.

View Article and Find Full Text PDF

The protection of UCK2 protein stability by GART maintains pyrimidine salvage synthesis for HCC growth under glucose limitation.

Oncogene

January 2025

Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Overexpression of uridine-cytidine kinase 2 (UCK2), a key enzyme in the pyrimidine salvage pathway, is implicated in human cancer development, while its regulation under nutrient stress remains to be investigated. Here, we show that under glucose limitation, AMPK phosphorylates glycinamide ribonucleotide formyltransferase (GART) at Ser440, and this modification facilitates its interaction with UCK2. Through its binding to UCK2, GART generates tetrahydrofolate (THF) and thus inhibits the activity of integrin-linked kinase associated phosphatase (ILKAP) for removing AKT1-mediated UCK2-Ser254 phosphorylation under glucose limitation, in which dephosphorylation of UCK2-Ser254 tends to cause Trim21-mediated UCK2 polyubiquitination and degradation.

View Article and Find Full Text PDF

Biofiltration for odor mitigation in water resource recovery facilities.

Sci Total Environ

January 2025

Department of Civil Engineering, City College of New York, New York, NY 10031, United States.

Odor emissions, primarily from anthropogenic activities like waste treatment and industrial processes, pose significant challenges in urban areas, particularly near water resource recovery facilities. While these emissions are generally not toxic, they can adversely affect community wellbeing and investment, prompting stricter regulations in some regions. For example, New York State's hydrogen sulfide guidelines are more stringent than federal standards.

View Article and Find Full Text PDF

Removal of antibiotics and their impact on growth, nutrient uptake, and biomass productivity in semi-continuous cultivation of Auxenochlorella protothecoides.

J Environ Manage

January 2025

Department of Civil Engineering and Environmental Management, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, Scotland, UK.

The prevalence of antibiotics in wastewater poses risks to human and animal health, contributing to antimicrobial resistance. Although various antibiotic removal methods exist, microalgae-based technology presents a cost-effective and eco-friendly alternative; however, limited research on its long-term integration in semi-continuous wastewater treatment trials hinders our understanding of its potential effectiveness. This investigation explored the antibiotic removal capabilities of the microalga Auxenochlorella protothecoides in photobioreactors with synthetic wastewater under semi-continuous conditions over one month.

View Article and Find Full Text PDF

Heterotrophic denitrification enhancement via effective organic matter degradation driven by suitable iron dosage in sediment.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China. Electronic address:

The control of internal pollution was important throughout the restoration of the lake, especially the removal of sediment internal nitrogen. Experiments involving incubation were conducted in this study to investigate the effects of iron remediation on nitrogen in both water and sediment. Adding iron with varying dosage had different effects on the nutrients content and other properties of water and sediment in remediation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!