Global profiling and characterization of Japanese flounder (Paralichthys olivaceus) kidney microRNAs regulated by Edwardsiella tarda infection in a time-dependent fashion.

Fish Shellfish Immunol

CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China. Electronic address:

Published: October 2019

Japanese flounder (Paralichthys olivaceus) is an important economic fish species farmed in China and other countries. It is susceptible to infection by Edwardsiella tarda, a severe fish pathogen with a broad host range. In this study, we employed high-throughput deep sequencing technology to identify, in a global scale, flounder kidney microRNAs (miRNAs) induced by E. tarda at different stages of infection. Differentially expressed miRNAs (DEmiRNAs) and mRNAs (DEmRNAs) exhibiting significantly altered expression levels before and after E. tarda infection were examined. A total of 96 DEmiRNAs were identified, for which 2779 target genes were predicted. Eighty-seven miRNA-mRNA pairs, involving 29 DEmiRNAs and 86 DEmRNAs, showed negative correlations in their expression patterns. GO and KEGG enrichment analysis revealed that the putative target genes of the DEmiRNAs were associated with diverse biological processes, cellular components, and molecular functions. One of the DEmiRNAs, pol-miR-182-5p, was demonstrated to regulate sphingosine-1-phosphate receptor 1 (PoS1PR1) negatively in a manner that depended on the specific interaction between the seed sequence of pol-miR-182-5p and the 3'-UTR of PoS1PR1. Overexpression of pol-miR-182-5p in flounder cells promoted apoptosis and inhibited cellular viability. Knockdown of PoS1PR1 in flounder enhanced E. tarda invasion and dissemination in fish tissues. These results provide new insights into miRNA-mediated anti-bacterial immunity in flounder.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2019.07.078DOI Listing

Publication Analysis

Top Keywords

japanese flounder
8
flounder paralichthys
8
paralichthys olivaceus
8
kidney micrornas
8
edwardsiella tarda
8
tarda infection
8
target genes
8
flounder
6
tarda
5
demirnas
5

Similar Publications

Effects of nitrate (NO) stress-induced exacerbated cadmium (Cd) toxicity on the inflammatory response, oxidative defense, and apoptosis in juvenile Japanese flounder (Paralichthys olivaceus).

J Environ Sci (China)

June 2025

Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China. Electronic address:

Due to the discharge of industrial wastewater, urban domestic sewage, and intensive marine aquaculture tailwater, nitrate (NO) pollution has emerged as a significant issue in offshore waters. Nitrate pollution affects aquatic life and may interact with other pollutants, leading to comprehensive toxicity. Cadmium (Cd) is the most widespread metal contaminant, adversely affecting aquatic life in the coastal waters of China.

View Article and Find Full Text PDF

Synchronously Mature Intersex Japanese Flounder (): A Rare Case.

Animals (Basel)

October 2024

China State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China.

Japanese flounder is usually gonochoristic, with gonads that are either testes or ovaries. Here, we report an unusual case of hermaphroditism in Japanese flounder captured from the Bohai Sea. In the intersex flounder, the membrane of the upper ovary was closely connected to the abdominal muscles and internal organs, and the eggs filled the entire abdomen.

View Article and Find Full Text PDF

Identification, expression, and function analysis of Rbpms2 splicing variants in Japanese flounder gonad.

Gen Comp Endocrinol

December 2024

Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

Rbpms2, an RNA-binding protein with multiple splicing (Rbpms), can interact with RNAs to involve oocyte development, thereby influencing female sex differentiation in vertebrates. Here, two splicing variants of the Rbpms2 gene from Japanese flounder (Paralichthys olivaceus) were identified, namely Rbpms2.1 and Rbpms2.

View Article and Find Full Text PDF

Identification and Functional Analysis of Ras-Related Associated with Diabetes Gene () in -Resistant Individuals of Japanese Flounder ().

Int J Mol Sci

October 2024

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.

Ras-related associated with diabetes (RRAD) is a member of the Ras GTPase superfamily that plays a role in several cellular functions, such as cell proliferation and differentiation. In particular, the superfamily acts as an NF-κB signaling pathway inhibitor and calcium regulator to participate in the immune response pathway. A recent transcriptome study revealed that was expressed in the spleen of disease-resistant Japanese flounder () individuals compared with disease-susceptible individuals, and the results were also verified by qPCR.

View Article and Find Full Text PDF

As an important CXC chemokine, CXCL8 plays pleiotropic roles in immunological response. In teleost, CXCL8 is involved in cell migration and bacterial invasion. However, the immune antibacterial function of CXCL8 in Japanese flounder (Paralichthys olivaceus) (PoCXCL8) is largely scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!