A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced Light Utilization in Semitransparent Organic Photovoltaics Using an Optical Outcoupling Architecture. | LitMetric

AI Article Synopsis

  • Building-integrated photovoltaics using transparent cells on windows can convert solar energy into electricity instead of just generating waste heat.
  • The study showcases semitransparent organic photovoltaic cells that incorporate a new design which enhances light transmission while absorbing near-infrared light, effectively doubling light utilization efficiency compared to conventional cells.
  • The optimal performance achieved has a light utilization efficiency of 3.56% and a power conversion efficiency of 8.0%, with designs also offering neutral color options and good color rendering quality.

Article Abstract

Building-integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather than generating waste heat. Semitransparent organic photovoltaic cells (ST-OPVs) that utilize a nonfullerene acceptor-based near-infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high conductivity Cu-Ag alloy electrode are demonstrated. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed. This combination of coatings results in doubling of the light utilization efficiency (LUE), which is equal to the product of the power conversion efficiency (PCE) and the average photopic transparency, compared with a conventional semitransparent cell lacking these coatings. A maximum LUE = 3.56 ± 0.11% is achieved for an ST-OPV with a PCE = 8.0 ± 0.2% at 1 sun, reference AM1.5G spectrum. Moreover, neutral colored ST-OPVs are also demonstrated, with LUE = 2.56 ± 0.2%, along with Commission Internationale d'Eclairage chromaticity coordinates of CIE = (0.337, 0.349) and a color rendering index of CRI = 87.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201903173DOI Listing

Publication Analysis

Top Keywords

light utilization
8
semitransparent organic
8
optical outcoupling
8
photovoltaic cells
8
enhanced light
4
semitransparent
4
utilization semitransparent
4
organic photovoltaics
4
photovoltaics optical
4
outcoupling architecture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!