Laying hens suffer from osteoporosis during their laying period, which causes bone fragility and susceptibility to fracture. This study evaluated the changes of mechanical properties of their bones during the laying period (from 18 to 77 wk) by using nano-indentation, atomic force microscope, X-Ray diffraction, and Raman spectroscopy. Results indicated that the crystallite sizes of bioapatite in femur decreased significantly from 34.45 to 29.26 nm during aging from 18 to 49 wk. Then, the value increased to 37.79 nm at 77 wk. Despite the abundance in bone (usually >50 wt.%), bioapatite mineral content showed no continuous enhancement during aging. The fibrils demonstrated more regular and organized structure during the laying period. Meanwhile the elastic moduli (E) and hardness (H) of femur increased from 10.84 to 18.39 GPa and 43.79 to 97.21 Vickers respectively during this period. The changes in mechanical properties are hence tightly related to the structure of bone (composed of both collagen and mineral), rather than directly related to the mineralogical properties of bone bioapatite. This study addressed the importance of the interaction between collagen and bioapatite mineral during the laying period of hens by microscopic, physicochemical, and mechanical analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913768 | PMC |
http://dx.doi.org/10.3382/ps/pez474 | DOI Listing |
Acta Biomater
December 2024
National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:
Effective vaccination is crucial for intervening in the COVID-19 pandemic. However, with the continuous mutation of the SARS-CoV-2, existing vaccines including subunit vaccines cannot effectively prevent virus infections. Hence, there is an urgent need to enhance the immunogenicity of existing vaccines to induce a more potent and durable immune response.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA; Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA. Electronic address:
Health and population status of bees is negatively affected by anthropogenic stressors, many of which co-occur in agricultural settings. While pollinator habitat (often involving plantings of native forbs) holds promise to benefit both managed and wild bees, important issues remain unresolved. These include whether conventional, broad-spectrum insecticide use negates these benefits and how non-native, managed honey bees affect wild bees in these areas.
View Article and Find Full Text PDFBrain Connect
December 2024
Department of Radiology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
Brain development during the preschool period is complex and extensive and underlies ongoing behavioral and cognitive maturation. Increasing understanding of typical brain maturation during this time is critical to early identification of atypical development and could inform treatments and interventions. Previous studies have suggested mismatches between brain structural and functional development in later childhood and adolescence.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
December 2024
Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China.
Inspired by the natural symbiotic relationships between diverse microbial members, researchers recently focused on modifying microbial chassis to create artificial coculture systems using synthetic biology tools. An increasing number of scientists are now exploring these systems as innovative biosynthetic platforms for biomass conversion. While significant advancements have been achieved, challenges remain in maintaining the stability and productivity of these systems.
View Article and Find Full Text PDFPoult Sci
December 2024
Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Science, Hefei 230031, China. Electronic address:
The objective of this study was to evaluate the effects of cage size on the natural behavior, serum biochemistry, production performance and hypothalamic transcriptome profiles of laying hens. A total of 360 79-week-old hens were selected and randomly assigned to three groups (with five replicates each) with different cage sizes: large cages (LCs), medium cages (MCs), and small cages (SCs). The stocking density remained consistent across all groups throughout the experimental period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!