Genome sequencing has revealed substantial variation in the predicted abilities of individual species within animal gut microbiota to metabolize the complex carbohydrates comprising dietary fiber. At the same time, a currently limited body of functional studies precludes a richer understanding of how dietary glycan structures affect the gut microbiota composition and community dynamics. Here, using biochemical and biophysical techniques, we identified and characterized differences among recombinant proteins from syntenic xyloglucan utilization loci (XyGUL) of three and one species from the human gut, which drive substrate specificity and access to distinct polysaccharide side chains. Enzymology of four syntenic glycoside hydrolase family 5 subfamily 4 (GH5_4) -xyloglucanases revealed surprising differences in xyloglucan (XyG) backbone cleavage specificity, including the ability of some homologs to hydrolyze congested branched positions. Further, differences in the complement of GH43 alpha-l-arabinofuranosidases and GH95 alpha-l-fucosidases among syntenic XyGUL confer distinct abilities to fully saccharify plant species-specific arabinogalactoxyloglucan and/or fucogalactoxyloglucan. Finally, characterization of highly sequence-divergent cell surface glycan-binding proteins (SGBPs) across syntenic XyGUL revealed a novel group of XyG oligosaccharide-specific SGBPs encoded within select The catabolism of complex carbohydrates that otherwise escape the endogenous digestive enzymes of humans and other animals drives the composition and function of the gut microbiota. Thus, detailed molecular characterization of dietary glycan utilization systems is essential both to understand the ecology of these complex communities and to manipulate their compositions, e.g., to benefit human health. Our research reveals new insight into how ubiquitous members of the human gut microbiota have evolved a set of microheterogeneous gene clusters to efficiently respond to the structural variations of plant xyloglucans. The data here will enable refined functional prediction of xyloglucan utilization among diverse environmental taxa in animal guts and beyond.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805095PMC
http://dx.doi.org/10.1128/AEM.01491-19DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
xyloglucan utilization
12
human gut
12
syntenic xyloglucan
8
utilization loci
8
polysaccharide side
8
complex carbohydrates
8
dietary glycan
8
syntenic xygul
8
gut
6

Similar Publications

Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA).

View Article and Find Full Text PDF

The gut-brain axis underlying hepatic encephalopathy in liver cirrhosis.

Nat Med

January 2025

Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.

Up to 50-70% of patients with liver cirrhosis develop hepatic encephalopathy (HE), which is closely related to gut microbiota dysbiosis, with an unclear mechanism. Here, by constructing gut-brain modules to assess bacterial neurotoxins from metagenomic datasets, we found that phenylalanine decarboxylase (PDC) genes, mainly from Ruminococcus gnavus, increased approximately tenfold in patients with cirrhosis and higher in patients with HE. Cirrhotic, not healthy, mice colonized with R.

View Article and Find Full Text PDF

Characteristics of gut microbiota profiles in Asian elephants (Elephas maximus) with gastrointestinal disorders.

Sci Rep

January 2025

Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.

Colic and diarrhea are common gastrointestinal (GI) disorders in captive Asian elephants, which can severely impact health and lead to mortality. Gut dysbiosis, indicated by alterations in gut microbiome composition, can be observed in individuals with GI disorders. However, changes in gut microbial profiles of elephants with GI disorders have never been investigated.

View Article and Find Full Text PDF

Intestinal TM6SF2 protects against metabolic dysfunction-associated steatohepatitis through the gut-liver axis.

Nat Metab

January 2025

Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.

Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). TM6SF2 genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host-microbe interactions in MASH development remains unclear.

View Article and Find Full Text PDF

Microbiome science has evolved rapidly in the past decade, with high-profile publications suggesting that the gut microbiome is a causal determinant of human health. This has led to the emergence of microbiome-focused biotechnology companies and pharmaceutical company investment in the research and development of gut-derived therapeutics. Despite the early promise of this field, the first generation of microbiome-derived therapeutics (faecal microbiota products) have only recently been approved for clinical use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!