Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Genetic factors influence susceptibility to diabetic kidney disease. Here we mapped genes mediating renal hypertrophic changes in response to diabetes. A survey of 15 mouse strains identified variation in diabetic kidney hypertrophy. Strains with greater (FVB/N(FVB)) and lesser (C57BL/6 (B6)) responses were crossed and diabetic F2 progeny were characterized. Kidney weights of diabetic F2 mice were broadly distributed. Quantitative trait locus analyses revealed diabetic mice with kidney weights in the upper quartile shared alleles on chromosomes (chr) 6 and 12; these loci were designated as Diabetic kidney hypertrophy (Dkh)-1 and -2. To confirm these loci, reciprocal congenic mice were generated with defined FVB chromosome segments on the B6 strain background (B6.Dkh1/2f) or vice versa (FVB.Dkh1/2b). Diabetic mice of the B6.Dkh1/2f congenic strain developed diabetic kidney hypertrophy, while the reciprocal FVB.Dkh1/2b congenic strain was protected. The chr6 locus contained the candidate gene; Ark1b3, coding aldose reductase; the FVB allele has a missense mutation in this gene. Microarray analysis identified differentially expressed genes between diabetic B6 and FVB mice. Thus, since the two loci identified by quantitative trait locus mapping are syntenic with regions identified for human diabetic kidney disease, the congenic strains we describe provide a valuable new resource to study diabetic kidney disease and test agents that may prevent it.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.kint.2019.04.031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!