Cell Wall Deficiency as a Coping Strategy for Stress.

Trends Microbiol

Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, NE2 4AX, UK. Electronic address:

Published: December 2019

The cell wall is a surface layer located outside the cell membrane of almost all bacteria; it protects cells from environmental stresses and gives them their typical shape. The cell wall is highly conserved in bacteria and is the target for some of our best antibiotics. Surprisingly, some bacteria are able to shed their wall under the influence of stress, yielding cells that are cell-wall-deficient. Notably, wall-deficient cells are flexible and are able to maneuver through narrow spaces, insensitive to wall-targeting antibiotics, and capable of taking up and exchanging DNA. Moreover, given that wall-associated epitopes are often recognized by host defense systems, wall deficiency provides a plausible explanation for how some bacteria may hide in their host. In this review we focus on this paradoxical stress response, which provides cells with unique opportunities that are unavailable to walled cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tim.2019.07.008DOI Listing

Publication Analysis

Top Keywords

cell wall
12
wall deficiency
8
cells
5
cell
4
deficiency coping
4
coping strategy
4
strategy stress
4
stress cell
4
wall
4
wall surface
4

Similar Publications

Fungi are well known for their ability to both produce and catabolize complex carbohydrates to acquire carbon, often in the most extreme of environments. Glucuronoxylomannan (GXM)-based gel matrices are widely produced by fungi in nature and though they are of key interest in medicine and pharmaceuticals, their biodegradation is poorly understood. Though some organisms, including other fungi, are adapted to life in and on GXM-like matrices in nature, they are almost entirely unstudied, and it is unknown if they are involved in matrix degradation.

View Article and Find Full Text PDF

The management of micronutrients, such as boron (B) and zinc (Zn), is critical for plant growth and crop yields. One method of rapid intervention crop management to mitigate nutritional deficiency is the foliar supply of B and Zn. Our study investigates the effect of foliar-supplied B and Zn availability on the global transcriptional modulation in soybean (Glycine max).

View Article and Find Full Text PDF

Novel Rhamnose-Containing Glycopolymers from the Cell Wall of VKM Ac-1390.

Biochemistry (Mosc)

December 2024

Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino, Moscow Region, 142290, Russia.

VKM Ac-1390 (family Microbacteriaceae, class Actinomycetes) contains three rhamnose-containing glycopolymers in the cell wall, the structures of which were established by chemical and NMR spectroscopy methods. The first polymer, a rhamnomannan, consists of repeating tetrasaccharide units with xylopyranose side residues, →2)-α-[β-D-Xyl-(1→3)]-D-Rha-(1→3)-α-D-Man-(1→2)-α-D-Rha-(1→3)-α-D-Man-(1→. The second polymer found in minor amounts, is a rhamnan, →2)-α-D-Rha-(1→3)-α-D-Rha-(1→.

View Article and Find Full Text PDF

Future long duration space missions will expose astronauts to higher doses of galactic cosmic radiation (GCR) than those experienced on the international space station. Recent studies have demonstrated astronauts may be at risk for cardiovascular complications due to increased radiation exposure and fluid shift from microgravity. However, there is a lack of direct evidence on how the cardiovascular system is affected by GCR and microgravity since no astronauts have been exposed to exploratory mission relevant GCR doses.

View Article and Find Full Text PDF

Physical forces supporting hyphal growth.

Fungal Genet Biol

January 2025

Department of Biology and Western Program, Miami University, Oxford, OH 45056, USA. Electronic address:

Hyphae are viscoelastic tubes whose internal pressure pushes the cell membrane against the inner surface of the cell wall. Catalytic yielding of the wall allows this turgor to force its polymers apart as new materials are added to the surface of the growing tip. Turgor drops slightly as the wall expands, creating a pressure gradient that causes the cytoplasm to flow toward the tip.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!