Ultraviolet light degrades the mechanical and structural properties of human stratum corneum.

J Mech Behav Biomed Mater

Department of Biomedical Engineering, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA. Electronic address:

Published: December 2019

Prolonged exposure of human skin to sunlight causes photodamage, which induces the early onset of wrinkles and increased tissue fragility. While solar ultraviolet (UV) light is considered to have the most damaging effect, the UV range that is most harmful remains a topic of significant debate. In this study, we take a first step towards elucidating biomechanical photoageing effects by quantifying how exposure to different UV ranges and dosages impacts the mechanical and structural properties of human stratum corneum (SC), the most superficial skin layer. Mechanical testing reveals that irradiation of isolated human SC to UVA (365 nm), UVB (302 nm), or UVC (265 nm) light with dosages of up to 4000 J/cm notably alters the elastic modulus, fracture stress, fracture strain, and work of fracture. For equivalent incident dosages, UVC degrades SC the greatest. However, upon discounting reflected and transmitted components of the incident light, a generalized scaling law relating the photonic energy absorbed by the SC to the energy cost of tissue fracture emerges. This relationship indicates that no one UV range is more damaging than another. Rather, the magnitude of absorbed UV energy governs the degradation of tissue mechanical integrity. Subsequent structural studies are performed to elucidate the cause of this mechanical degradation. UV absorption scales with the spatial dispersion of desmoglein 1 (Dsg 1), a component of corneocyte cell-cell junctions, away from intercellular sites. Combining both scaling laws, we establish a mechanical-structural model capable of predicting UV induced tissue mechanical integrity from Dsg 1 dispersion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2019.103391DOI Listing

Publication Analysis

Top Keywords

ultraviolet light
8
mechanical structural
8
structural properties
8
properties human
8
human stratum
8
stratum corneum
8
absorbed energy
8
tissue mechanical
8
mechanical integrity
8
mechanical
6

Similar Publications

Vitamin B, or riboflavin, is essential for maintaining healthy cellular metabolism and function. However, its light sensitivity, poor water solubility, and gastrointestinal barriers limit its storage, delivery, and absorption. Selecting suitable nanomaterials for encapsulating vitamin B is crucial to overcoming these challenges.

View Article and Find Full Text PDF

Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938.

Appl Microbiol Biotechnol

December 2024

Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.

Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X.

View Article and Find Full Text PDF

Xeroderma pigmentosum group C (XPC) is a versatile protein crucial for sensing DNA damage in the global genome nucleotide excision repair (GG-NER) pathway. This pathway is vital for mammalian cells, acting as their essential approach for repairing DNA lesions stemming from interactions with environmental factors, such as exposure to ultraviolet (UV) radiation from the sun. Loss-of-function mutations in the XPC gene confer a photosensitive phenotype in XP-C patients, resulting in the accumulation of unrepaired UV-induced DNA damage.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae cells, the bulk of mitochondrial DNA (mtDNA) replication is mediated by the replicative high-fidelity DNA polymerase γ. However, upon UV irradiation low-fidelity translesion polymerases: Polη, Polζ and Rev1, participate in an error-free replicative bypass of UV-induced lesions in mtDNA. We analysed how translesion polymerases could function in mitochondria.

View Article and Find Full Text PDF

Ultraviolet (UV) hyperspectral imaging shows significant promise for the classification and quality assessment of raw cotton, a key material in the textile industry. This study evaluates the efficacy of UV hyperspectral imaging (225-408 nm) using two different light sources: xenon arc (XBO) and deuterium lamps, in comparison to NIR hyperspectral imaging. The aim is to determine which light source provides better differentiation between cotton types in UV hyperspectral imaging, as each interacts differently with the materials, potentially affecting imaging quality and classification accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!