The activated sludge (AS) and sulfate-reducing bacteria (SRB) sludge systems were continuously operated for 200 days in laboratory to investigate the stress-responses of these two sludge systems under ciprofloxacin (CIP) exposure. It was found that CIP was effectively removed by SRB sludge via adsorption and biodegradation, but little biodegradation in AS system. The CIP biodegradation by SRB sludge made the SRB sludge system more sustainable and tolerant to long-term CIP exposure than AS system with significant (p < 0.05) CIP desorption and decrease of CIP removal. CIP shaped the microbial communities in AS and SRB sludge, and significantly (p < 0.05) inhibited the family Nitrosomonadaceae (ammonia-oxidizing bacteria (AOB)) and genus Nitrospira (nitrite-oxidizing bacteria (NOB)/complete ammonia oxidizer(comammox)) and the nitrogen removal in AS system. Moreover, CIP posed the increase of genus Zoogloea-like organisms and the non-filamentous bulking of AS, e.g. 313 ± 12 mL/g of sludge volume index (SVI) at phase V (influent CIP = 5000 μg/L). The genus Desulfobacter was enriched in SRB sludge system under long-term CIP exposure, and stimulated chemical oxygen demand (COD) removal and sulfate reduction. The increase of genera Zoogloea, Acinetobacter and Flavobacterium in AS, and Zoogloea and Acinetobacter in SRB sludge systems under CIP exposure promoted extracellular polymeric substances (EPS) production and CIP adsorption for self-protection of microbes against CIP toxicity. The functional groups of N-H, O-H, C-O-C and C=O in EPS of AS and SRB sludge provided adsorption sites for CIP and impeded CIP impact on microbial cells. The findings of this study provide an insight into the stress-responses of AS and SRB sludge under long-term CIP exposure, and exhibit the great potential of treating CIP-laden wastewater by SRB sludge system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2019.114964DOI Listing

Publication Analysis

Top Keywords

srb sludge
16
sludge
8
activated sludge
8
sulfate-reducing bacteria
8
sludge systems
8
cip exposure
8
stress-responses activated
4
sludge anaerobic
4
anaerobic sulfate-reducing
4
bacteria sludge
4

Similar Publications

The Microbiologically Influenced Corrosion and Protection of Pipelines: A Detailed Review.

Materials (Basel)

October 2024

School of Environmental and Municipal Engineering, Qingdao University of Technology, 777 Jialingjiang Rd, Qingdao 266000, China.

Article Synopsis
  • - Microbial corrosion refers to the damage caused to materials by microorganisms, particularly in industries like oil and gas, leading to significant losses in facilities such as sewage systems and food-processing equipment.
  • - Sulfate-reducing bacteria (SRB) is identified as the most harmful type of bacteria involved in this process, contributing to mechanisms like pitting corrosion and cathodic depolarization in pipelines.
  • - The review highlights potential strategies for controlling microbial corrosion in pipelines, emphasizing the exploration of new, eco-friendly protection methods.
View Article and Find Full Text PDF

Inoculating sulfate-reducing bacteria (SRB) habitats offers an eco-friendly method for treating sulfate-metal laden wastewater, characterized by high sulfate levels, low pH, and elevated heavy metals. This study optimizes source habitat selection of SRB by evaluating groundwater, sewage sludge, and lake sediment, focusing on their suitability and adaptability to aerobic-anaerobic transitions in industrial settings. Sewage sludge, with its slightly acidic pH, reducing environment, and high nutrient levels (Total organic carbon: 207.

View Article and Find Full Text PDF

Multi-method characterization of groundwater nitrate and sulfate contamination by karst mines in southwest China.

Sci Total Environ

October 2024

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 610059, PR China; College of Environment Civil Engineering, Chengdu University of Technology, Chengdu 610059, PR China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China. Electronic address:

Groundwater contamination by nitrate and sulfate in mining areas is a significant challenge. Consequently, the inputs sources of these contaminants and their evolution have received considerable attention, with the knowledge gained critical for improved management of water quality. This study integrated data on multiple stable isotopes and water chemistry data and a Bayesian isotope mixing model to investigate the relative contributions of inputs sources of sulfate and nitrate sources to bodies of water in a karst mining area in southwest China.

View Article and Find Full Text PDF

The fluvial transport of dissolved inorganic carbon (DIC) is an important component of the global carbon cycle. Herein, we assessed the dynamics of DIC and the C stable isotopic composition (δC) in a watershed with diversified land use in São Paulo State (Brazil), more specifically in the Sorocaba River basin (SRB) and considered the temporal and spatial scales. For this purpose, twelve fluvial samples at each sampling point (e.

View Article and Find Full Text PDF

The development of low-cost, highly efficient adsorbent materials is of significant importance for environmental remediation. In this study, a novel material, sulfurized nano zero-valent iron loaded biomass carbon (S-nZVI/BC), was successfully synthesized by a simple manufacturing process. The preparation of S-nZVI/BC does not require the use of expensive and hazardous chemicals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!