This paper reports a new method to generate stable and high-brightness electroluminescence (EL) by subsequently growing large/small grains at micro/nano scales with the configuration of attaching small grains on the surfaces of large grains in perovskite (MAPbBr) films by mixing two precursor solutions (PbBr + MABr and Pb(Ac)·3HO + MABr). Consequently, the small and large grains serve, respectively, as passivation agents and light-emitting centers, enabling self-passivation on the defects located on the surfaces of light-emitting large grains. Furthermore, the light-emitting states become linearly polarized with maximal polarization of 30.8%, demonstrating a very stable light emission (49,119 cd/m with EQE = 11.31%) and a lower turn-on bias (1.9 V) than the bandgap (2.25V) in the perovskite LEDs (ITO/PEDOT:PSS/MAPbBr/TPBi[50 nm]/LiF[0.7 nm]/Ag). Therefore, mixing large/small grains with the configuration of attaching small grains on the surfaces of large grains by mixing two precursor solutions presents a new strategy to develop high-performance perovskite LEDs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706605PMC
http://dx.doi.org/10.1016/j.isci.2019.07.044DOI Listing

Publication Analysis

Top Keywords

large grains
20
attaching small
12
small grains
12
grains surfaces
12
surfaces large
12
perovskite leds
12
grains
10
enabling self-passivation
8
high-performance perovskite
8
large/small grains
8

Similar Publications

Ultrabright aggregation-induced materials for the highly sensitive detection of Ag and T-2 toxin.

Food Chem

January 2025

State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:

Heavy metals and mycotoxins are important contaminants in food pollution. Sensitive, reliable, and rapid detection of heavy metals and mycotoxins is crucial for human health. In this work, imidazole-functionalized aggregation-induced emission (AIE) molecule tetra-(4-pyridylphenyl) ethylene (TPPE) was used as a precise and specific probe for Ag detection, with a limit of detection (LOD) of 0.

View Article and Find Full Text PDF

Danio rerio, commonly known as zebrafish, is an established model organism for the developmental and cell biology studies. Although significant progress has been made in the analysis of the D. rerio genome, cytogenetic studies face challenges due to the unclear identification of chromosomes.

View Article and Find Full Text PDF

After a long-distance migration, Avars with Eastern Asian ancestry arrived in Eastern Central Europe in 567 to 568 CE and encountered groups with very different European ancestry. We used ancient genome-wide data of 722 individuals and fine-grained interdisciplinary analysis of large seventh- to eighth-century CE neighbouring cemeteries south of Vienna (Austria) to address the centuries-long impact of this encounter. We found that even 200 years after immigration, the ancestry at one site (Leobersdorf) remained dominantly East Asian-like, whereas the other site (Mödling) shows local, European-like ancestry.

View Article and Find Full Text PDF

Feature enhanced cascading attention network for lightweight image super-resolution.

Sci Rep

January 2025

Zhongyu (Fujian) Digital Technology Co., Ltd, Fuzhou, 350108, China.

Attention mechanisms have been introduced to exploit deep-level information for image restoration by capturing feature dependencies. However, existing attention mechanisms often have limited perceptual capabilities and are incompatible with low-power devices due to computational resource constraints. Therefore, we propose a feature enhanced cascading attention network (FECAN) that introduces a novel feature enhanced cascading attention (FECA) mechanism, consisting of enhanced shuffle attention (ESA) and multi-scale large separable kernel attention (MLSKA).

View Article and Find Full Text PDF

Multi-source biological knowledge-guided hypergraph spatiotemporal subnetwork embedding for protein complex identification.

Brief Bioinform

November 2024

Information Science and Technology College, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, Liaoning, China.

Identifying biologically significant protein complexes from protein-protein interaction (PPI) networks and understanding their roles are essential for elucidating protein functions, life processes, and disease mechanisms. Current methods typically rely on static PPI networks and model PPI data as pairwise relationships, which presents several limitations. Firstly, static PPI networks do not adequately represent the scopes and temporal dynamics of protein interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!