The present study investigated if preparing a movement that is expected to evoke pain results in hesitation to initiate the movement (i.e., avoidance) and, especially, if the allocation of attention to the threatened body part mediates such effect. To this end, healthy volunteers (N = 33) performed a postural perturbation task recruiting lower back muscles. In 'threat trials', the movement was sometimes followed by an experimental pain stimulus on the back, whereas in 'no-threat trials', a non-painful control stimulus was applied. Electroencephalography (EEG) was used to assess attending to the lower back. Specifically, somatosensory evoked potentials (SEPs) to task-irrelevant tactile stimuli administered to the lower back were recorded during movement preparation. Reaction times (RTs) were recorded to assess movement initiation. The results revealed faster responses and enhanced somatosensory attending to the lower back on threat trials than on no-threat trials. Importantly, the amplitude of the N95 SEP component predicted RTs and was found to partially mediate the effect of pain anticipation on movement initiation. These findings suggest that somatosensory attending might be a potential mechanism by which pain anticipation can modulate motor execution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2019.146383DOI Listing

Publication Analysis

Top Keywords

somatosensory attending
12
attending lower
12
movement initiation
8
pain anticipation
8
movement
6
lower
5
pain
5
somatosensory
4
lower associated
4
associated response
4

Similar Publications

We are not only passively immersed in a sensorial world, but we are active agents that directly produce stimulations. Understanding what is unique about sensory consequences can give valuable insight into the action-perception-cycle. Sensory attenuation is the phenomenon that self-produced stimulations are perceived as less intense compared to externally-generated ones.

View Article and Find Full Text PDF

Alpha and Theta Oscillations Associated With Behavioral Phenotypes of Pain-Attention Interaction.

Brain Behav

January 2025

Division of Brain, Imaging and Behavior, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.

Purpose: Pain is inherently salient and so draws our attention in addition to impacting performance on attention-demanding tasks. Individual variability in pain-attention interactions can be assessed by two kinds of behavioral phenotypes that quantify how individuals prioritize pain versus attentional needs. The intrinsic attention to pain (IAP) measure quantifies the degree to which a person attends to pain (high-IAP) or mind-wanders away from pain (low-IAP).

View Article and Find Full Text PDF

Endogenous visuo-spatial attention is under the control of a fronto-parietal network of brain regions. One key node in this network, the intra-parietal sulcus (IPS), plays a crucial role in maintaining endogenous attention, but little is known about its ongoing physiology and network dynamics during different attentional states. Here, we investigated the reactivity of the left IPS in response to brain stimulation under different states of selective attention.

View Article and Find Full Text PDF

People with fibromyalgia syndrome (FMS) may have difficulty attending rehabilitation sessions. We investigated the feasibility (adherence and satisfaction) of implementing an 8-week home-based somatosensory, entirely remote, self-training programme using the TrainPain smartphone app in people with FMS. The secondary aim was to evaluate the effect on pain symptoms.

View Article and Find Full Text PDF
Article Synopsis
  • Each sensory modality has specific primary and secondary thalamic nuclei, with primary ones clearly relaying sensory information, while the function of secondary nuclei remains less understood.
  • Researchers trained mice to focus on one sensory input (touch or vision) while ignoring the other, recording neuron activity in the secondary somatosensory thalamus (POm) and secondary visual thalamus (LP).
  • Findings revealed that POm's activation pattern changed based on the trained focus—showing robust activation to touch when focusing on it and to visual stimuli when trained for vision—indicating behavioral training alters how secondary thalamic nuclei respond to stimuli.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!