A study of the metabolic pathway and the rate of 2,4,6-trinitrotoluene (TNT) transformation depending on the nature of the electron acceptor in the electron transport chain of Pseudomonas fluorescens B-3468 revealed that the first reaction of nitroreduction of TNT resulting in formation of 2-amino-4,6-dinitrotoluene (2A) and 4-amino-2,6-dinitrotoluene (4A) became more active in case of nitrate respiration as compared to oxygen respiration; a TNT decrease was 100 and 66%, respectively. The same tendency but much more pronounced was observed at the next stage of nitroreduction that lead to 2,4-diamino-6-nitrotoluene (2,4DA). On the contrary, aerobic conditions are more preferable for the subsequent destruction of 2,4DA. Thus monoamino derivatives, 2A and 4A, predominated under anaerobic conditions, whereas 2,4DA under anaerobic ones (85 and 69% of the total nitrogen-containing metabolites), respectively. Phloroglucinol and pyrogallol accumulated in the culture liquid when the bacteria were grown on a medium containing 2,4DA as a sole source of nitrogen. Their role as intermediates was proved by the results obtained by studying oxidative activity of the cells grown in the presence of 2,4DA and phloroglucinol.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nitrate respiration
8
24da
5
[transformation 246-trinitrotoluene
4
246-trinitrotoluene oxygen
4
oxygen nitrate
4
respiration pseudomonas
4
pseudomonas fluorescens]
4
fluorescens] study
4
study metabolic
4
metabolic pathway
4

Similar Publications

Unlabelled: The intestinal diarrheal pathogen colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here we show that nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability.

View Article and Find Full Text PDF

Phycospheric Bacteria Alleviate the Stress of Erythromycin on by Regulating Nitrogen Metabolism.

Plants (Basel)

January 2025

Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.

Macrolide pollution has attracted a great deal of attention because of its ecotoxic effects on microalgae, but the role of phycospheric bacteria under antibiotic stress remains unclear. This study explored the toxic effects of erythromycin (ERY) on the growth and nitrogen metabolism of ; then, it analyzed and predicted the effects of the composition and ecological function of phycospheric bacteria on microalgae under ERY stress. We found that 0.

View Article and Find Full Text PDF

Metals have been used throughout history to manage disease. With the rising incidence of antibiotic-resistant bacterial strains, metal-based antimicrobials (MBAs) have re-emerged as an alternative to combat infections. Gallium nitrate has shown promising efficacy against several pathogens.

View Article and Find Full Text PDF

Environmental drivers of stream metabolism in a middle TN headwater stream.

PLoS One

December 2024

Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, Tennessee, United States of America.

Monitoring the seasonal and diurnal variations in headwater stream metabolic regimes can provide critical information for understanding how ecosystems will respond to future environmental changes. In East Fork Creek, a headwater stream in middle Tennessee, week-long field campaigns were set up each month from May 2022 to May 2023 to collect stream metabolism estimators. In a more extensive field campaign from July 2-5 in 2022, diel signals were observed for temperature, pH, turbidity, and concentrations of Ca, Mg, K, Se, Fe, Ba, chloride, nitrate, DIC, DO, DOC, and total algae.

View Article and Find Full Text PDF

Optimized Mn cycle enhanced synchronous removal of nitrate and antibiotics driven by manganese oxides/solid carbon composites: Microbiota assembly patterns and electron transport.

J Hazard Mater

December 2024

Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences (Peking University), Ministry of Education, Beijing 100871, PR China. Electronic address:

The reactive substance consisting manganese oxides (MnOx) and solid carbon have been reported to be effective in polishing secondary wastewater; however, the treatment characteristics and mechanism remains limited. In this study, MnOx/carbon (Mn-C) composites were applied in biofilters to evaluate simultaneous removal of nitrate and sulfamethoxazole (SMX), with the single carbon composites as control. Results showed that the effluent concentrations of NO-N and SMX were below 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!