Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201903137DOI Listing

Publication Analysis

Top Keywords

microfabricated sandwiching
4
sandwiching assay
4
assay nanoliter
4
nanoliter high-throughput
4
high-throughput biomarker
4
biomarker screening
4
microfabricated
1
assay
1
nanoliter
1
high-throughput
1

Similar Publications

An obstacle for many microfluidic developments is the fabrication of its structures, which is often complex, time-consuming, and expensive. Additive manufacturing can help to reduce these barriers. This study investigated whether the results of a microfluidic assay for the detection of the promyelocytic leukemia (PML)-retinoic acid receptor α (RARα) fusion protein (PML::RARA), and thus for the differential diagnosis of acute promyelocytic leukemia (APL), could be transferred from borosilicate glass microfluidic structures to additively manufactured fluidics.

View Article and Find Full Text PDF

Microbial contamination is an important factor threatening the safety of Chinese medicine preparations, and microfluidic detection methods have demonstrated excellent advantages in the application of rapid bacterial detection. In our study, a novel optical biosensor was developed for the rapid and sensitive detection of in traditional Chinese medicine on a microfluidic chip. Immune gold@platinum nanocatalysts (Au@PtNCs) were utilized for specific bacterial labeling, while magnetic nano-beads (MNBs) with a novel high-gradient magnetic field were employed for the specific capture of bacteria.

View Article and Find Full Text PDF

Rapid and sensitive detection of heart-type fatty acid binding protein using aggregation-induced emission nanoparticles on digital microfluidics workstation.

Biosens Bioelectron

October 2024

Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China; Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510080, China. Electronic address:

Early and rapid diagnostic of acute myocardial infarction (AMI) during its developing stage is crucial due to its high fatality rate. Heart-type fatty acid binding protein (h-FABP) is an ideal biomarker for the quantitative diagnosis of AMI, surpassing traditional markers such as myoglobin, creatine phosphokinase-MB, and troponin in terms of sensitivity, specificity, and prognostic value. To obtain diagnostic and prognostic information, a precise and fully quantitative measurement of h-FABP is essential, typically achieved through an immunosorbent assay like the enzyme-linked immunosorbent assay.

View Article and Find Full Text PDF

Ultra-sensitive fluorescent biosensor for multiple bacteria detection based on CDs/QDs@ZIF-8 and microfluidic fluidized bed.

Mikrochim Acta

April 2024

National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.

An ultra-sensitive fluorescent biosensor based on CDs/QDs@ZIF-8 and microfluidic fluidized bed was developed for rapid and ultra-sensitive detection of multiple target bacteria. The zeolitic imidazolate frameworks (ZIF-8) act as the carrier to encapsulate three kinds of fluorescence signal molecules from the CDs/QDs@ZIF-8 signal amplification system. Besides, three kinds of target pathogenic bacteria were automatically, continuously, and circularly captured by the magnetic nanoparticles (MNPs) in the microfluidic fluidized bed.

View Article and Find Full Text PDF

Food safety represents a critical global public health issue, with safety challenges posed by foodborne pathogens garnering extensive attention. Therefore, we introduce a co-recognition, enrichment and sensing (CES) all-in-one strategy for analysis of bacteria with low background and high specificity. This method employs antimicrobial peptide (AMP) functionalized magnetic nanoparticles (MNPs) to enrich bacteria and uses aptamer@Au@PBA (KMFe(CN) (M = Pb and Ni)) NPs as silent SERS tags.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!