Thermotropic ionic liquid crystals based on the flavylium scaffold have been synthesized and studied for their structure-properties relationship for the first time. The mesogens were probed by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and X-ray diffraction (XRD). Low numbers of alkoxy side chains resulted in smectic (SmA) and lamello-columnar (Lam ) phases, whereas higher substituted flavylium salts showed Col as well as ordered and disordered columnar (Col , Col ) mesophases. Mesophase width ranged from 13 K to 220 K, giving access to room temperature liquid crystals. The optical properties of the synthesized compounds were probed towards absorption and emission properties. Strong absorption with maxima between 444 and 507 nm was observed, and some chromophores were highly emissive with quantum yields up to 99 %. Ultimately, mesogenic and dye properties were examined by temperature-dependent emissive experiments in the solid state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856849PMC
http://dx.doi.org/10.1002/chem.201901975DOI Listing

Publication Analysis

Top Keywords

liquid crystals
12
flavylium salts
8
ionic liquid
8
salts blooming
4
blooming core
4
core bioinspired
4
bioinspired ionic
4
crystals thermotropic
4
thermotropic ionic
4
crystals based
4

Similar Publications

The Synthesis, Crystal Structure, Modification, and Cytotoxic Activity of α-Hydroxy-Alkylphosphonates.

Molecules

January 2025

Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111 Budapest, Hungary.

A series of α-hydroxy-alkylphosphonates and α-hydroxy-alkylphosphine oxides were synthesized by the Pudovik reaction of acetaldehyde and acetone with dialkyl phosphites or diarylphosphine oxides. The additions were performed in three different ways: in liquid phase using triethylamine as the catalyst (1), on the surface of AlO/KF solid catalyst (2), or by a MW-assisted NaCO-catalyzed procedure (3). In most of the cases, our methods were more efficient and more robust than those applied in the literature.

View Article and Find Full Text PDF

In this paper, we demonstrate a blazed phase grating to achieve tunable beam steering and propose a novel algorithm to reduce the stripe noise in wrapped phase. To control the diffraction angle to steer light to the desired direction, an electrically tunable transmission-type beam deflector based on liquid crystals is introduced, and electric fields are applied to the patterned indium tin oxide electrodes to change its phase retardation. Two different 2π phase-wrapping methods are applied to obtain various diffraction angles within the minimum cell-gap, and the method of equal interval of phase achieves a worthwhile diffraction efficiency compared to the methods based on equal interval of diffraction angle.

View Article and Find Full Text PDF

Based on additive manufacturing via photopolymerization, this study combines polymer-dispersed liquid crystal (PDLC) technology with 3D printing technology to produce tunable micro-optical components with switchable diffraction or focusing characteristics. The diffraction grating and Fresnel zone plate are the research targets. Their structures are designed and simulated to achieve expected optical functions.

View Article and Find Full Text PDF

The quality of frozen crayfish () is challenged by freeze-thaw (FT) cycles during storage. The effect of freezing methods on the quality of crayfish during FT cycles was investigated by comparing physicochemical properties, microstructure, and myofibrillar protein (MPs) properties. Three methods were used for crayfish freezing, including air convective freezing (AF) at -20 °C and -50 °C, as well as liquid nitrogen freezing (LNF) at -80 °C.

View Article and Find Full Text PDF

Ferroelectric nematic (N) liquid crystals combine liquid-like fluidity and orientational order of conventional nematics with macroscopic electric polarization comparable in magnitude to solid-state ferroelectric materials. Here, we present a systematic study of twenty-seven homologous materials with various fluorination patterns, giving new insight into the molecular origins of spontaneous polar ordering in fluid ferroelectric nematics. Beyond our initial expectations, we find the highest stability of the N phase to be in materials with specific fluorination patterns rather than the maximal fluorination, which might be expected based on simple models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!