MicroRNAs play an essential role in autophagy regulation in various disease phenotypes.

Biofactors

Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China.

Published: November 2019

Autophagy is a highly conserved catabolic process and fundamental biological process in eukaryotic cells. It recycles intracellular components to provide nutrients during starvation and maintains quality control of organelles and proteins. In addition, autophagy is a well-organized homeostatic cellular process that is responsible for the removal of damaged organelles and intracellular pathogens. Moreover, it also modulates the innate and adaptive immune systems. Micro ribonucleic acids (microRNAs) are a mature class of post-transcriptional modulators that are widely expressed in tissues and organs. And, it can suppress gene expression by targeting messenger RNAs for translational repression or, at a lesser extent, degradation. Research indicates that microRNAs regulate autophagy through different pathways, playing an essential role in the treatment of various diseases. It is an important regulator of fundamental cellular processes such as proliferation, autophagy, and cell apoptosis. In this review article, we first review the current knowledge of autophagy and the function of microRNAs. Then, we summarize the mechanism of autophagy and the signaling pathways related to autophagy by citing at least the main proteins involved in the different phases of the process. Second, we introduce other members of RNA and report some examples in various pathologies. Finally, we review the current literature regarding microRNA-based therapies for cancer, atherosclerosis, cardiac disease, tuberculosis, and viral diseases. MicroRNAs can cause autophagy upregulation or downregulation by targeting genes or affecting autophagy-related signaling pathways. Therefore, the microRNAs have a huge potential in autophagy regulation, and it is the function as diagnostic and prognostic markers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916288PMC
http://dx.doi.org/10.1002/biof.1555DOI Listing

Publication Analysis

Top Keywords

autophagy
10
essential role
8
autophagy regulation
8
review current
8
signaling pathways
8
micrornas
6
micrornas play
4
play essential
4
role autophagy
4
regulation disease
4

Similar Publications

CircRNA CDR1AS promotes cardiac ischemia-reperfusion injury in mice by triggering cardiomyocyte autosis.

J Mol Med (Berl)

January 2025

Cardiovascular Surgery Department of The First Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.

Myocardial ischemia/reperfusion (IR) injury is a common adverse event in the clinical treatment of myocardial ischemic disease. Autosis is a form of cell death that occurs when autophagy is excessive in cells, and it has been associated with cardiac IR damage. This study aimed to investigate the regulatory mechanism of circRNA CDR1AS on autosis in cardiomyocytes under IR.

View Article and Find Full Text PDF

Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1.

Sci Rep

January 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.

The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.

View Article and Find Full Text PDF

Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.

View Article and Find Full Text PDF

Protein quality control machinery: regulators of condensate architecture and functionality.

Trends Biochem Sci

January 2025

Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA; Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA. Electronic address:

Protein quality control (PQC) mechanisms including the ubiquitin (Ub)-proteasome system (UPS), autophagy, and chaperone-mediated refolding are essential to maintain protein homeostasis in cells. Recent studies show that these PQC mechanisms are further modulated by biomolecular condensates that sequester PQC components and compartmentalize reactions. Accumulating evidence points towards the PQC machinery playing a pivotal role in regulating the assembly, disassembly, and viscoelastic properties of several condensates.

View Article and Find Full Text PDF

Role of hepatocyte-specific FOXO1 in hepatic glucolipid metabolic disorders induced by perfluorooctane sulfonate.

Environ Pollut

January 2025

Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China. Electronic address:

Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!