Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Some host-guest complexes of cucurbit[n]uril (CB[n]) host molecules act as supramolecular amphiphiles (SAs), which hierarchically self-assemble into various nanomaterials such as vesicles, micelles, nanorods, and nanosheets in water. The structures and functions of the nanomaterials can be controlled by supramolecular engineering of the host-guest complexes. In addition, functionalization at the periphery of CB[6] and CB[7] generates CB[n]-based molecular amphiphiles (MAs) that can also self-assemble into vesicles or micelle-like nanoparticles in water. Taking advantage of the molecular cavities of CBs and their strong guest recognition properties, the surface of the self-assembled nanomaterials can be easily decorated with various functional tags in a non-covalent manner. In this feature article, the two types (SAs and MAs) of CB-based amphiphiles, their self-assemblies and their applications for nanotherapeutics and theranostics are presented with future perspectives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cc05567c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!