The phylum Apicomplexa comprises human pathogens such as but is also an under-explored hotspot of evolutionary diversity central to understanding the origins of parasitism and non-photosynthetic plastids. We generated single-cell transcriptomes for all major apicomplexan groups lacking large-scale sequence data. Phylogenetic analysis reveals that apicomplexan-like parasites are polyphyletic and their similar morphologies emerged convergently at least three times. Gregarines and eugregarines are monophyletic, against most expectations, and rhytidocystids and are sister lineages to medically important taxa. Although previously unrecognized, plastids in deep-branching apicomplexans are common, and they contain some of the most divergent and AT-rich genomes ever found. In eugregarines, however, plastids are either abnormally reduced or absent, thus increasing known plastid losses in eukaryotes from two to four. Environmental sequences of ten novel plastid lineages and structural innovations in plastid proteins confirm that plastids in apicomplexans and their relatives are widespread and share a common, photosynthetic origin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733595PMC
http://dx.doi.org/10.7554/eLife.49662DOI Listing

Publication Analysis

Top Keywords

apicomplexan-like parasites
8
parasites polyphyletic
8
polyphyletic selectively
4
selectively dependent
4
dependent cryptic
4
plastid
4
cryptic plastid
4
plastid organelles
4
organelles phylum
4
phylum apicomplexa
4

Similar Publications

The king scallop (Pecten maximus) is a commercially important species found around the United Kingdom coast. The association of an Apicomplexan-like parasite with mass mortality of Icelandic scallop (Chlamys islandica) in Iceland and the presence of identical parasites in king scallop (Pecten maximus) and queen scallop (Aequipecten opercularis) in Scotland raised serious concerns regarding the health of Scottish king scallops. Marine Scotland Science (MSS) conducted a survey in 2016 to assess the prevalence and the intensity of parasite infection in king scallops.

View Article and Find Full Text PDF

Comparative transcriptomic analyses of Chromera and Symbiodiniaceae.

Environ Microbiol Rep

August 2020

ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, 4811, Australia.

Reef-building corals live in a mutualistic relationship with photosynthetic algae (family Symbiodiniaceae) that usually provide most of the energy required by the coral host. This relationship is sensitive to temperature stress; as little as a 1°C increase often leads to the collapse of the association. This sensitivity has led to an interest in the potential of more stress-tolerant algae to supplement or substitute for the normal Symbiodiniaceae mutualists.

View Article and Find Full Text PDF

The apicomplexans are a group of obligate animal pathogens that include Plasmodium (malaria), Toxoplasma (toxoplasmosis), and Cryptosporidium (cryptosporidiosis) [1]. They are an extremely diverse and specious group but are nevertheless united by a distinctive suite of cytoskeletal and secretory structures related to infection, called the apical complex, which is used to recognize and gain entry into animal host cells. The apicomplexans are also known to have evolved from free-living photosynthetic ancestors and retain a relict plastid (the apicoplast), which is non-photosynthetic but houses a number of other essential metabolic pathways [2].

View Article and Find Full Text PDF

The phylum Apicomplexa comprises human pathogens such as but is also an under-explored hotspot of evolutionary diversity central to understanding the origins of parasitism and non-photosynthetic plastids. We generated single-cell transcriptomes for all major apicomplexan groups lacking large-scale sequence data. Phylogenetic analysis reveals that apicomplexan-like parasites are polyphyletic and their similar morphologies emerged convergently at least three times.

View Article and Find Full Text PDF

Nephromyces, a beneficial apicomplexan symbiont in marine animals.

Proc Natl Acad Sci U S A

September 2010

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138-2902, USA.

With malaria parasites (Plasmodium spp.), Toxoplasma, and many other species of medical and veterinary importance its iconic representatives, the protistan phylum Apicomplexa has long been defined as a group composed entirely of parasites and pathogens. We present here a report of a beneficial apicomplexan: the mutualistic marine endosymbiont Nephromyces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!