AI Article Synopsis

  • The study investigates how bone morphogenetic protein 4 (BMP4) affects the cell cycle and apoptosis (cell death) of hematopoietic stem and progenitor cells (HSPC) during bone marrow suppression induced by 5-fluorouracil (5-FU).
  • Researchers created C57BL transgenic mice overexpressing BMP4 and compared them to wild-type (WT) mice under similar conditions to assess changes in HSPC.
  • Results showed that BMP4 overexpression led to reduced HSPC in a resting phase (G0) and increased apoptosis during bone marrow suppression, suggesting BMP4 might influence HSPC cell cycles by lowering levels of certain regulatory factors like Hif-1

Article Abstract

Objective: To explore the effect of bone morphogenetic protein 4(BMP4) on the cell cycle and apoptosis of hemaropoictic stem and progenitor cells (HSPC) in conditions of 5-fluorouracil (5-FU)-inducing bone marrow suppression and stress hemogenesis, and its possible mechanism.

Methods: The C57BL transgenic mice with BMP4 overexpression were established and were enrolled in transgenic group (BMP4 group), at the same time the wild type mice matching in age, sex and body weight were selected and were enrolled in control group (WT group). The bone marrow suppression was induced by injection with 5-FU in dose of 150 mg/kg, then the nucleated cells were isolated from bone marrow. After the HSPCs were markered with C-kit/sca-1 fluorescent antibodies, the changes of cell cycle and apoptosis of HSPC were detected by Aunexin V/PI and Ki67/DAPI double staining; the cell cycle-essociated hemotopoietic regulatory factors were detected by RT-qPCR.

Results: Under physiologic status, there were no significant differences in cell cycle and apoptotic rate of HSPC between WT group and BMP-4 group. After the bone marrow was suppressed, the ratio of HSPC at G0 phase in BMP4 group significantly decreased(P<0.05); the apoptosis rate of HSPC significantly increased(P<0.05); the mRNA expression levels of hypoxia-inducing factor Hif-1α and chemotactic factor CXCL12 in stroma of BMP4 group were down-regulated significanfly(P<0.05).

Conclusion: Under non-physiologic conditions such as stress hemogenesis or bone marrow suppression, the up-regulation of BMP4 can promote HSPC into cell cycle and apoptosis of HSPC, moreover, the BMP4 may play a regulatory role for cell cycle of HSPC through direct or indirect down-regulation of Hif-1α and CXCL-12 expressions.

Download full-text PDF

Source
http://dx.doi.org/10.19746/j.cnki.issn.1009-2137.2019.04.045DOI Listing

Publication Analysis

Top Keywords

cell cycle
24
bone marrow
20
cycle apoptosis
16
marrow suppression
12
bmp4 group
12
hspc
8
stress hemogenesis
8
group
8
group bone
8
apoptosis hspc
8

Similar Publications

Persistence is a strategy used by many viruses to evade eradication by the immune system, ensuring their permanence and transmission within the host and optimizing viral fitness. During persistence, viruses can trigger various phenomena, including target organ damage, mainly due to an inflammatory state induced by infection, as well as cell proliferation and/or immortalization. In addition to immune evasion and chronic inflammation, factors contributing to viral persistence include low-level viral replication, the accumulation of viral mutants, and, most importantly, maintenance of the viral genome and reliance on viral oncoprotein production.

View Article and Find Full Text PDF

Photodynamic inactivation (PDI) has been revealed as a valuable approach against viral infections because of the fast therapeutic effect and low possibility of resistance development. The photodynamic inhibition of the infectivity of human herpes simplex virus type 1 (HSV-1) strain Victoria at different stages of its reproduction was studied. PDI activity was determined on extracellular virions, on the stage of their adsorption to the Madin-Darby bovine kidney (MDBK) cell line and inhibition of the viral replication stage by application of two tetra-methylpyridiloxy substituted gallium and zinc phthalocyanines (ZnPcMe and GaPcMe) upon 660 nm light exposure with a light-emitting diode (LED 660 nm).

View Article and Find Full Text PDF

Rewriting Viral Fate: Epigenetic and Transcriptional Dynamics in KSHV Infection.

Viruses

November 2024

State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.

Kaposi's sarcoma-associated herpesvirus (KSHV), a γ-herpesvirus, is predominantly associated with Kaposi's sarcoma (KS) as well as two lymphoproliferative disorders: primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). Like other herpesviruses, KSHV employs two distinct life cycles: latency and lytic replication. To establish a lifelong persistent infection, KSHV has evolved various strategies to manipulate the epigenetic machinery of the host.

View Article and Find Full Text PDF

Persistent Rhesus Enteric Calicivirus Infection in Recombinant CHO Cells Expressing the Coxsackie and Adenovirus Receptor.

Viruses

November 2024

Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.

Recently, using a panel of recombinant CHO cell lines, we identified the coxsackie and adenovirus receptor (CAR) and histo-blood group antigens (HBGAs) or sialic acid as the minimum requirement for susceptibility to rhesus enteric calicivirus (ReCV) infections. While ReCVs cause lytic infection in LLC-MK2 cells, recombinant CHO (rCHO) cell lines did not exhibit any morphological changes upon infection. To monitor infectious virus production, rCHO cell cultures had to be freeze-thawed and titrated on LLC-MK2 monolayers.

View Article and Find Full Text PDF

C118P Suppresses Gastric Cancer Growth via Promoting Autophagy-Lysosomal Degradation of RAB1A.

Pharmaceutics

December 2024

New Drug Screening and Pharmacodynamics Evaluation Center, National Key Laboratory for Multi-Target Natural Drugs, China Pharmaceutical University, Nanjing 210009, China.

: Gastric cancer (GC) is the leading cause of cancer-related deaths worldwide. C118P, a microtubule inhibitor with anti-angiogenic and vascular-disrupting activities, was proven to be cytotoxic to various cancer cell lines. This study aimed to explore the anti-tumor effect of C118P against gastric cancer and identify its potential target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!