Human plasma cholesteryl ester transfer protein (CETP) mediates the transfer of neutral lipids from antiatherogenic high-density lipoproteins (HDLs) to proatherogenic low-density lipoproteins (LDLs). Recent cryo-electron microscopy studies have suggested that CETP penetrates its N- and C-terminal domains in HDL and LDL to form a ternary complex, which facilitates the lipid transfer between different lipoproteins. Inhibition of CETP lipid transfer activity has been shown to increase the plasma HDL-C levels and, therefore, became an effective strategy for combating cardiovascular diseases. Thus, understanding the molecular mechanism of inhibition of lipid transfer through CETP is of paramount importance. Recently reported inhibitors, torcetrapib and anacetrapib, exhibited low potency in addition to severe side effects, which essentially demanded a thorough knowledge of the inhibition mechanism. Here, we employ steered molecular dynamics simulations to understand how inhibitors interfere with the neutral lipid transfer mechanism of CETP. Our study revealed that inhibitors physically occlude the tunnel posing a high energy barrier for lipid transfer. In addition, inhibitors bring about the conformational changes in CETP that hamper CE passage and expose protein residues that disrupt the optimal hydrophobicity of the CE transfer path. The atomic level details presented here could accelerate the designing of safe and efficacious CETP inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.9b00301 | DOI Listing |
J Membr Biol
January 2025
School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India.
Membrane fusion is the first step in the infection process of the enveloped viruses. Enveloped viruses fuse either at the cell surface or enter the cell through endocytosis and transfer their internal genetic materials by fusing with the endosomal membrane at acidic pH. In this work, we have evaluated the effect of the Dengue virus fusion peptide (DENV FP) on the polyethylene glycol (PEG)-mediated lipid mixing of vesicles (hemifusion formation) at pH 5 and pH 7.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Research Institute of the, McGill University Health Centre, Montreal, QC, Canada.
The increasing shift from cannabis smoking to cannabis vaping is largely driven by the perception that vaping to form an aerosol represents a safer alternative to smoking and is a form of consumption appealing to youth. Herein, we compared the chemical composition and receptor-mediated activity of cannabis smoke extract (CaSE) to cannabis vaping extract (CaVE) along with the biological response in human bronchial epithelial cells. Chemical analysis using HPLC and GC/MS revealed that cannabis vaping aerosol contained fewer toxicants than smoke; CaSE and CaVE contained teratogens, carcinogens, and respiratory toxicants.
View Article and Find Full Text PDFClin Rev Allergy Immunol
January 2025
Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
Exosomes, small extracellular vesicles secreted by various cell types, have emerged as key players in the pathophysiology of autoimmune diseases. These vesicles serve as mediators of intercellular communication, facilitating the transfer of bioactive molecules such as proteins, lipids, and nucleotide. In autoimmune diseases, exosomes have been implicated in modulating immune responses, oxidative stress, autophagy, gut microbes, and the cell cycle, contributing to disease initiation, progression, and immune dysregulation.
View Article and Find Full Text PDFNat Metab
January 2025
Centre for Orthopaedic Research, Medical School of the University of Western Australia, Nedlands, Western Australia, Australia.
Intercellular mitochondria transfer is an evolutionarily conserved process in which one cell delivers some of their mitochondria to another cell in the absence of cell division. This process has diverse functions depending on the cell types involved and physiological or disease context. Although mitochondria transfer was first shown to provide metabolic support to acceptor cells, recent studies have revealed diverse functions of mitochondria transfer, including, but not limited to, the maintenance of mitochondria quality of the donor cell and the regulation of tissue homeostasis and remodelling.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
Lipid A, a well-known saccharolipid, acts as the inner lipid-glycan anchor of lipopolysaccharides in Gram-negative bacterial cell membranes and functions as an endotoxin. Its structure is composed of two glucosamines with β(1 → 6) linkages and various fatty acyl and phosphate groups. The lipid A structure can be used for the identification of bacterial species, but its complexity poses significant structural characterization challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!