The effects of three fertilization treatments (no fertilizer, nitrogen fertilizer, and lime) on the characteristics of Vicia villosa decomposition and nutrient release were studied using the nylon bag method in the fields. The results showed that the cumulative decomposition rate of V. villosa was 65.3%-72.5% across the three fertilization treatments. V. villosa decomposed rapidly during 0-11 d, then slowed down and tended to be stable. The nutrient release rates across the three treatments were potassium > phosphorus > carbon > nitrogen. At the end of the experiment (148 d), the cumulative release rates of carbon, nitrogen, phosphorus and potassium were 83.6%-84.6%, 78.2%-81.2%, 89.8%-91.4% and 96.3%-97.0%, respectively. During the whole decomposition period, the characteristics of nitrogen release and decomposition of V. villosa were similar. Compared with no fertilizer treatment, lime application promoted decomposition and release of nitrogen, phosphorus and potassium. Nitrogen fertilizer application promoted phosphorus release but inhibited potassium release. Both nitrogen application and lime application had no significant effect on carbon release. The application of nitrogen fertilizer promoted the decomposition of V. villosa and nitrogen release in 0-11 d, but inhibited those processes in 11-148 d. The first-order kinetic reaction equation and logarithmic function equation well fitted the characteristics of V. villosa decomposition and the release of carbon, nitrogen, phosphorus and potassium in the rice fields of South Henan. The characteristic parameters of the equation were significantly correlated with the decomposition rate and nutrient release rate of V. villosa. In summary, lime application was better than nitrogen fertili-zer in promoting decomposition and nutrient release of V. villosa. Moreover, the parameters of the first-order kinetic equation and logarithmic function equation showed a good description of decomposition and nutrient release of V. villosa.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.201907.005DOI Listing

Publication Analysis

Top Keywords

nutrient release
24
decomposition nutrient
16
release
14
nitrogen fertilizer
12
carbon nitrogen
12
nitrogen phosphorus
12
phosphorus potassium
12
lime application
12
decomposition
11
nitrogen
11

Similar Publications

Organic fertilizers have been identified as a sustainable agricultural practice that can enhance productivity and reduce environmental impact. Recently, the European Union defined and accepted insect frass as an innovative and emerging organic fertilizer. In the wider domain of organic fertilizers, mathematical and computational models have been developed to optimize their production and application conditions.

View Article and Find Full Text PDF

Aim: Snakes exhibit remarkable physiological shifts when their large meals induce robust postprandial growth after prolonged fasting. To understand the regulatory mechanisms underlying this rapid metabolic transition, we examined the regulation of protein synthesis in pythons, focusing on processes driving early postprandial tissue remodeling and growth.

Methods: Using the SUnSET method with puromycin labeling, we measured in vivo protein synthesis in fasting and digesting snakes at multiple post-feeding intervals.

View Article and Find Full Text PDF

Nutritional intake is closely linked to gonadal development, although the mechanisms by which food intake affects gonadal development are not fully understood. Cholecystokinin (CCK) is a satiety neuropeptide derived from the hypothalamus, and the present study observed that hypothalamic CCK expression is significantly influenced by food intake, which is mediated through blood glucose levels. Interestingly, CCK and its receptors were observed to exhibit a high expression in the hypothalamus-pituitary-gonad (HPG) axis of grass carp (), suggesting that CCK is potentially involved in regulating fish reproduction through the HPG axis.

View Article and Find Full Text PDF

The interplay between the gut microbiota and gastrointestinal hormones plays a pivotal role in the health of the host and the development of diseases. As a vital component of the intestinal microecosystem, the gut microbiota influences the synthesis and release of many gastrointestinal hormones through mechanisms such as modulating the intestinal environment, producing metabolites, impacting mucosal barriers, generating immune and inflammatory responses, and releasing neurotransmitters. Conversely, gastrointestinal hormones exert feedback regulation on the gut microbiota by modulating the intestinal environment, nutrient absorption and utilization, and the bacterial biological behavior and composition.

View Article and Find Full Text PDF

Marine heatwaves are increasingly common due to human-induced climate change. Under prolonged thermal stress on coral reefs, corals can undergo bleaching, leading to mass coral mortality and large-scale changes in benthic community composition. While coral mortality has clear, negative impacts on the body condition and populations of coral-dependent fish species, the mechanisms that drive these changes remain poorly resolved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!