To understand the effects of agricultural management activities on soil arbuscular mycorrhizal (AM) fungi diversity, the high-throughput sequencing based on Illumina MiSeq platform, and the fatty acids fingerprints were used to examine the effects of maize straw returning on soil arbuscular mycorrhizal fungi. The relationships between AM fungal community composition, AM fungal biomass and soil factors after maize straw returning were examined for four continuous years. A total of 2430 operational taxonomic units (OTUs) of AM fungi were classified into 10 genera and 143 species, respectively, which belonged to 1 phylum, 3 classes, 4 orders, 8 families. There was no significant difference in AM fungal community richness (Chaoles index and ACE index) and diversity (Shannon, Simpson diversity indices) in different treatments. Paraglomus and Glomus were dominant genera among all AM fungal communities. With the increase of the maize straw returned amounts, the abundance of Glomus reduced. Under the treatments of 3000 and 9000 kg·hm straw returned, the abundance of Glomus and Acaulospora had significant differences with the control (0 kg·hm). Compared with the control, there were significant differences between Archaeospora, Paraglomus and Glomus in the treatment of 3000 kg·hm straw returned. Results from non-metric multi-dimensional scale (NMDS) analysis showed that under 9000 and 12000 kg·hm straw returning treatments, the difference between the β diversity of soil AM fungi and the spatial distance of controls was farther apart than the other treatments. The effect of straw returning on the β diversity of AM fungi was significant. The multivariate analysis results revealed the relationship of the spatial variation between the soil physicochemical properties and AM fungi richness and diversity could be explained at 82.8% cumulative variables. The total nitrogen and available nitrogen were the most important factors driving soil microbial communities biomass marked by PLFAs and AM fungal biomass (NLFAs). The continuous maize straw returning to the field changed the genera composition of AM fungi. With the increases of straw returning amounts, the specific species of AM fungi decreased and the similarity between AM fungi community composition decreased. Straw returning increased soil AM fungi biomass and its contribution to soil total microbial biomass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201908.034 | DOI Listing |
J Environ Manage
January 2025
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Plastic film mulching is a potentially water-saving cultivation strategy, while straw return coupled with nitrogen (N) fertilization can ensure sustainable soil productivity and increased soil organic matter (SOM) sequestration. Nevertheless, a comprehensive understanding of how soil quality and agronomic productivity respond to long-term N fertilization and straw incorporation practices under non-flooded conditions with plastic film mulching remains elusive. Herein, a 15-year field experiment with straw incorporation practices (straw return and no straw return) under various N fertilization rates (N0, N1, N2, N3, and N4: 0, 45, 90, 135, and 180 kg N ha, respectively) was conducted to explore their long-term effects.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:
Communities of arbuscular mycorrhizal fungi (AMF) in soil are influenced by various agricultural managements, which in turn affects crop productivity. However, the impacts of straw returning on AMF communities are sparsely understood. Here, a 7-year field experiment including three sets of straw managements - returning methods (CK: no-tillage without straw; RT-SR: rotary tillage with straw; DB-SR: ditch-buried tillage with straw), burial amount, burial depth - were applied to evaluate the influences of straw managements on AMF composition.
View Article and Find Full Text PDFSci Rep
January 2025
Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China.
To address the problems of planting density and low soil nutrient content in maize cultivation and production in western Inner Mongolia. This study aims to elucidate the regulatory mechanism by which soil fertility augmentation affects maize yield formation under a variety of planting densities. In this study, nine soil fertility conditions were established by deep tillage, no-tillage and in situ straw return.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China. Electronic address:
The application of organic substances to the agricultural field has effectively enhanced soil nutrient levels and crop yields. Biodegradable microplastics (bio-MPs), a pervasive emerging contaminant, may potentially impact the soil ecosystem through their aging process. Here, a 150-day dark incubation experiment was conducted to elucidate the disparities in the aging process of polylactic acid bio-MPs (PLA-MPs) in soils with contrasting C/N ratios of organic substances, as the mechanisms underlying this process remain unclear.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China. Electronic address:
Hydroxyl radical (OH) plays a critical role in accelerating organic contaminant attenuation during water-table decline in paddy soil, but the impacts of widely applied agricultural amendments (e.g., organic manure, rice straw, and biochar) on these processes have been rarely explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!