Reverting ontogeny: rapid phenotypic plasticity of colour vision in cichlid fish.

R Soc Open Sci

Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany.

Published: July 2019

AI Article Synopsis

Article Abstract

Phenotypic plasticity, particularly during development, allows organisms to rapidly adjust to different environmental conditions. Yet, it is often unclear whether the extent and direction of plastic changes are restricted by an individual's ontogeny. Many species of cichlid fishes go through ontogenetic changes in visual sensitivity, from short to long wavelengths, by switching expression of cone opsin genes crucial for colour vision. During this progression, individuals often exhibit phenotypic plasticity to the ambient light conditions. However, it is commonly assumed that once an adult visual phenotype is reached, reverting to an earlier ontogenetic state with higher sensitivity at shorter wavelengths is not common. In this study, we experimentally demonstrate that four-month-old Midas cichlid fish () show plasticity in single cone opsin expression after experiencing drastic changes in light conditions. Resulting shifts of visual sensitivity occurred presumably in an adaptive direction-towards shorter or longer wavelengths when exposed to short- or long-wavelength light, respectively. Single cone opsin expression changed within only a few days and went through a transitional phase of co-expression. When the environment was experimentally enriched in long-wavelength light, the corresponding change occurred gradually along a dorsoventral gradient within the retina. This plasticity allowed individuals to revert earlier ontogenetic changes and return to a more juvenile visual phenotype demonstrating previously unrecognized insights into temporal and spatial dynamics of phenotypic plasticity of the visual system in response to ambient light.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689635PMC
http://dx.doi.org/10.1098/rsos.190841DOI Listing

Publication Analysis

Top Keywords

phenotypic plasticity
16
cone opsin
12
colour vision
8
cichlid fish
8
ontogenetic changes
8
visual sensitivity
8
ambient light
8
light conditions
8
visual phenotype
8
earlier ontogenetic
8

Similar Publications

Morphological change in an isolated population of red squirrels () in Britain.

R Soc Open Sci

January 2025

Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.

The mechanical properties of dietary items are known to influence skull morphology, either through evolution or by phenotypic plasticity. Here, we investigated the impact of supplementary feeding of peanuts on the morphology of red squirrels () from five populations in Britain (North Scotland, Borders, Jersey and two temporally distinct populations from Formby (Merseyside)). Stable isotope analysis confirmed dietary ecology in 58 specimens.

View Article and Find Full Text PDF

Heat acclimation defense against exertional heat stroke by improving the function of preoptic TRPV1 neurons.

Theranostics

January 2025

Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.

Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS.

View Article and Find Full Text PDF

Climate change and epigenetics: Unraveling the role of methylation in response to thermal instability in the Antarctic plant Colobanthus quitensis.

Physiol Plant

January 2025

Centro de Ecología Integrativa (CEI), Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.

Low temperatures are one of the critical conditions affecting the performance and distribution of plants. Exposure to cooling results in the reprogramming of gene expression, which in turn would be mediated by epigenetic regulation. Antarctica is known as one of the most severe ecosystems, but several climate models predict an increase in average temperature, which may positively impact the development of Antarctic plants; however, under warmer temperatures, plants' vulnerability to damages from low-temperature events increases.

View Article and Find Full Text PDF

Identification of EXPA4 as a key gene in cotton salt stress adaptation through transcriptomic and coexpression network analysis of root tip protoplasts.

BMC Plant Biol

January 2025

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.

Background: Salinity stress impairs cotton growth and fiber quality. Protoplasts enable elucidation of early salt-responsive signaling. Elucidating crop tolerance mechanisms that ameliorate these diverse salinity-induced stresses is key for improving agricultural productivity under saline conditions.

View Article and Find Full Text PDF

A balanced activity of cGMP signaling contributes to the maintenance of cardiovascular homeostasis. Vascular smooth muscle cells (VSMCs) can generate cGMP via three ligand-activated guanylyl cyclases, the NO-sensitive guanylyl cyclase, the atrial natriuretic peptide (ANP)-activated GC-A, and the C-type natriuretic peptide (CNP)-stimulated GC-B. Here, we study natriuretic peptide signaling in murine VSMCs and atherosclerotic lesions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!