Characterization of DNA Repair Foci in Root Cells of in Response to DNA Damage.

Front Plant Sci

Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan.

Published: July 2019

As a sessile organism, plants are constantly challenged by diverse environmental stresses that threaten genome integrity by way of induction of DNA damage. In plants, each tissue is composed of differentiated cell types, and the response to DNA damage differs among each cell type. However, limited information is available on the subnuclear dynamics of different cell types in response to DNA damage in plants. A chromatin remodeling factor RAD54, which plays an important role in the exchange reaction and alteration of chromatin structure during homologous recombination, specifically accumulates at damaged sites, forming DNA repair foci (termed RAD54 foci) in nuclei after γ-irradiation. In this study, we performed a time-course analysis of the appearance of RAD54 foci in root cells of after γ-irradiation to characterize the subnuclear dynamics in each cell type. A short time after γ-irradiation, no significant difference in detection frequency of RAD54 foci was observed among epidermal, cortical, and endodermal cells in the meristematic zone of roots. Interestingly, cells showing RAD54 foci persisted in roots at long time after γ-irradiation, and RAD54 foci in these cells localized to nuclear periphery with high frequency. These observations suggest that the nuclear envelope plays a role in the maintenance of genome stability in response to DNA damage in roots.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682680PMC
http://dx.doi.org/10.3389/fpls.2019.00990DOI Listing

Publication Analysis

Top Keywords

dna damage
20
rad54 foci
20
response dna
16
dna repair
8
repair foci
8
foci root
8
root cells
8
damage plants
8
cell types
8
types response
8

Similar Publications

Los olvidados: Non-BRCA variants associated with Hereditary breast cancer in Mexican population.

Breast Cancer Res

January 2025

Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, 66451, Monterrey, Nuevo León, México.

Background: Hereditary predisposition to breast and ovarian cancer syndrome (HBOC) is a pathological condition with increased cancer risk, including breast (BC), ovarian cancer (OC), and others. HBOC pathogenesis is caused mainly by germline pathogenic variants (GPV) in BRCA1 and BRCA2 genes. However, other relevant genes are related to this syndrome diagnosis, prognosis, and treatment, including TP53, PALB2, CHEK2, ATM, etc.

View Article and Find Full Text PDF

Bi-targeting of thioredoxin 1 and telomerase by thiotert promotes cell death of myelodysplastic syndromes and lymphoma.

Biol Direct

January 2025

Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.

Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal.

View Article and Find Full Text PDF

Deep learning reveals diverging effects of altitude on aging.

Geroscience

January 2025

Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.

Aging is influenced by a complex interplay of multifarious factors, including an individual's genetics, environment, and lifestyle. Notably, high altitude may impact aging and age-related diseases through exposures such as hypoxia and ultraviolet (UV) radiation. To investigate this, we mined risk exposure data (summary exposure value), disease burden data (disability-adjusted life years (DALYs)), and death rates and life expectancy from the Global Health Data Exchange (GHDx) and National Data Management Center for Health of Ethiopia for each subnational region of Ethiopia, a country with considerable differences in the living altitude.

View Article and Find Full Text PDF

Pyrithione zinc alters mismatch repair to trigger tumor immunogenicity.

Oncogene

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

Mismatch repair deficiency (dMMR) cancers are highly sensitive to immunotherapy, but only account for a small fraction of cancer patients. How to increase immunotherapy efficacy on MMR-proficient (pMMR) cancer is still a major challenge. This study demonstrates that pyrithione zinc (PYZ), an FDA-approved drug, can enhance tumor immunogenicity via altering MMR and activating STING signaling.

View Article and Find Full Text PDF

The cytotoxic mechanisms of thymidylate synthase inhibitors, such as the multitarget antifolate pemetrexed, are not yet fully understood. Emerging evidence indicates that combining pemetrexed with histone deacetylase inhibitors (HDACi) may enhance therapeutic efficacy in non-small cell lung cancer (NSCLC). To explore this further, A549 NSCLC cells were treated with various combinations of pemetrexed and the HDACi MS275 (Entinostat), and subsequently assessed for cell viability, cell cycle changes, and genotoxic markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!