A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer's Disease Classification. | LitMetric

Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer's Disease Classification.

Front Aging Neurosci

Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.

Published: July 2019

Deep neural networks have led to state-of-the-art results in many medical imaging tasks including Alzheimer's disease (AD) detection based on structural magnetic resonance imaging (MRI) data. However, the network decisions are often perceived as being highly non-transparent, making it difficult to apply these algorithms in clinical routine. In this study, we propose using layer-wise relevance propagation (LRP) to visualize convolutional neural network decisions for AD based on MRI data. Similarly to other visualization methods, LRP produces a heatmap in the input space indicating the importance/relevance of each voxel contributing to the final classification outcome. In contrast to susceptibility maps produced by guided backpropagation ("Which change in voxels would change the outcome most?"), the LRP method is able to directly highlight positive contributions to the network classification in the input space. In particular, we show that (1) the LRP method is very specific for individuals ("Why does this person have AD?") with high inter-patient variability, (2) there is very little relevance for AD in healthy controls and (3) areas that exhibit a lot of relevance correlate well with what is known from literature. To quantify the latter, we compute size-corrected metrics of the summed relevance per brain area, e.g., relevance density or relevance gain. Although these metrics produce very individual "fingerprints" of relevance patterns for AD patients, a lot of importance is put on areas in the temporal lobe including the hippocampus. After discussing several limitations such as sensitivity toward the underlying model and computation parameters, we conclude that LRP might have a high potential to assist clinicians in explaining neural network decisions for diagnosing AD (and potentially other diseases) based on structural MRI data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685087PMC
http://dx.doi.org/10.3389/fnagi.2019.00194DOI Listing

Publication Analysis

Top Keywords

network decisions
16
neural network
12
mri data
12
layer-wise relevance
8
relevance propagation
8
deep neural
8
alzheimer's disease
8
based structural
8
input space
8
lrp method
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!