Transport fluxes and properties of riverine organic carbon in the tropical monsoon region were the vital parameters in the global riverine organic carbon fluxes budget. The study focused on the riverine organic carbon in the Changhuajiang River (CHJR), locating at the mid-west of the Hainan Island, China. Dissolved organic carbon (DOC) concentrations in the CHJR ranged from 0.22 mg/L to 11.75 mg/L with an average of 1.75 mg/L, which was lower than the average of global rivers and had a significantly temporal and spatial variation. Output flux of riverine DOC was calculated as 0.55 t/km/y, which could be revised up to 1.03 t/km/y, considering that the riverine discharge before dam construction. A linear model of riverine DOC flux suitable in CHJR basin was established, which involved the factors, such as soil organic carbon, runoff depth and slope, etc. There was a large variation of POC concentrations in the CHJR where the average POC concentration in the dry season was 2.41 times of the wet season. Riverine POC flux in CHJR basin was calculated as 1.78 t/km/y, higher than the average of global rivers and far lower than those in other domestic larger rivers. About 8.28 × 10 t POC were exported yearly in CHJR, of which, 7.15 × 10 t originated from terrestrial ecosystem and 1.13 × 10 t stemmed from aquatic ecosystem. Meanwhile, about 87.74% of terrestrial source happened in the wet season and 12.26% in the dry season. This research revealed that the riverine organic carbon mainly stemmed from the surface erosion processes in the drainage basin during the wet season.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695426 | PMC |
http://dx.doi.org/10.1038/s41598-019-48208-y | DOI Listing |
Crit Rev Anal Chem
January 2025
Department of Chemistry, University of Delhi, New Delhi, India.
Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 262306, China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China. Electronic address:
In higher plants, sugars are the primary products of photosynthesis, where CO is converted into organic carbon within the mesophyll cells of leaves. These sugars serve as a critical source of carbon skeletons for the biosynthesis of essential cellular compounds, energy production, and as osmotic and signaling molecules. Plant sugar transporter proteins play a key role in facilitating the long-distance translocation of sugars from source to sink organs, thereby controlling their distribution and accumulation across the plant.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.
Ocean acidification (OA) and global warming (GW) drive a variety of responses in seagrasses that may modify their carbon metabolism, including the dissolved organic carbon (DOC) fluxes and the organic carbon stocks in upper sediments. In a 45-day full-factorial mesocosm experiment simulating forecasted CO and temperature increase in a Cymodocea nodosa community, we found that net community production (NCP) was higher under OA conditions, particularly when combined with warming (i.e.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand. Electronic address:
Chlorine (Cl) and chlorine dioxide (ClO) are commonly used to disinfect water but unfavorable interactions with dissolved organic matter (DOM) result in the formation of disinfection byproducts (DBPs). This study investigated the formation of organic DBPs arising from Cl and ClO disinfections under different contact times in two surface waters in Thailand and Suwannee River natural organic matter with/without bromide using unknown screening analysis with Orbitrap mass spectrometry. Many CHOCl-DBPs and CHOBr-DBPs intermediates were rapidly formed during the initial period of contact (5-30 min).
View Article and Find Full Text PDFSci Total Environ
January 2025
Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 101408, China. Electronic address:
The biogeochemical processes of organic matter exhibit notable variability and unpredictability in marginal seas. In this study, the abiologically and biologically driving effects on particulate organic matter (POM) and dissolved organic matter (DOM) were investigated in the Yellow Sea and Bohai Sea of China, by introducing the cutting-edge network inference tool of deep learning. The concentration of particulate organic carbon (POC) was determined to characterize the status of POM, and the fractions and fluorescent properties of DOM were identified through 3D excitation-emission-matrix spectra (3D-EEM) combined parallel factor analysis (PARAFAC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!