Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: We performed a systematic review of the literature to describe current knowledge of cardiovascular (CV) risk prediction algorithms in rheumatic diseases.
Methods: A systematic search of MEDLINE, EMBASE, and Cochrane Central databases was performed. The search was restricted to original publications in English, had to include clinical CV events as study outcomes, assess the predictive properties of at least 1 CV risk prediction algorithm, and include patients with rheumatoid arthritis (RA), ankylosing spondylitis (AS), systemic lupus erythematosus (SLE), psoriatic arthritis (PsA), or psoriasis. By design, only cohort studies that followed participants for CV events were selected.
Results: Eleven of 146 identified manuscripts were included. Studies evaluated the predictive performance of the Framingham Risk Score, QRISK2, Systematic Coronary Risk Evaluation (SCORE), Reynolds Risk Score, American College of Cardiology/American Heart Association Pooled Cohort Equations (PCE), Expanded Cardiovascular Risk Prediction Score for Rheumatoid Arthritis (ERS-RA), and the Italian Progetto CUORE score. Approaches to improve predictive performance of general risk algorithms in patients with RA included the use of multipliers, biomarkers, disease-specific variables, or a combination of these to modify or develop an algorithm. In both SLE and PsA patients, multipliers were applied to general risk algorithms. In studies of RA and SLE patients, efforts to include nontraditional risk factors, disease-related variables, multipliers, and biomarkers largely failed to substantially improve risk estimates.
Conclusion: Our study confirmed that general risk algorithms mostly underestimate and at times overestimate CV risk in rheumatic patients. We did not find studies that evaluated models for psoriasis or AS, which further demonstrates a need for research in these populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3899/jrheum.190261 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!