Embryonic Ontogeny of 5-Hydroxyindoles and 5-Methoxyindoles Synthesis Pathways in the Goose Pineal Organ.

Int J Mol Sci

Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.

Published: August 2019

The aim of this study was to characterize the embryonic ontogeny of 5-hydroxyindoles and 5-methoxyindoles synthesis pathways in the goose pineal organ. The study was performed on embryos aged 14-28 days, which have been incubated under a 12L:12D cycle. The pineal organs were collected for measurements of indole content by HPLC every 6 h on embryonic day (ED) 14, ED 16, ED 18 and ED 22 or every 2 h on ED 24, ED 26 and ED 28. The level of tryptophan showed no significant changes during development and no day-night variations. The content of 5-hydroxytryptophan increased between ED 14 and ED 26. It was significantly higher during scotophase than during photophase starting from ED 14. The serotonin content was low during the early stages of development (ED 14-ED 18) and prominently increased from ED 20. The serotonin levels also showed day-night differences; however, they were less conspicuous than those of 5-hydroxytryptophan. The changes in the level of 5-hydroxyindole acetic acid were similar to those of serotonin. 5-Hydroxytryptophol was measurable from ED 18. Levels of -acetylserotonin, which were detectable for the first time on ED 16, prominently increased between ED 22 and ED 28 and showed significant day-night differences from ED 20. Melatonin was detectable from ED 18. Like -acetylserotonin, its content increased rapidly between ED 22 and ED 28, and from ED 20 showed diurnal variations. 5-Methoxyindole acetic acid and 5-methoxytryptophol occurred at measurable levels from ED 18 and ED 26, respectively. The obtained results showed that embryonic development of indole metabolism in the goose pineal organ starts with the beginning of serotonin synthesis. The processes of serotonin acetylation and 5-hydroxyindoles methylation were turned on later. Diurnal rhythmicity develops very early in the embryonic pineal organ of the goose when the eggs are incubated under a 12 h light: 12 h dark schedule. Two processes are responsible for generation of the diurnal rhythms of 5-hydroxyindoles and 5-methoxyindoles: (i) hydroxylation of tryptophan and (ii) acetylation of serotonin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719024PMC
http://dx.doi.org/10.3390/ijms20163948DOI Listing

Publication Analysis

Top Keywords

pineal organ
16
5-hydroxyindoles 5-methoxyindoles
12
goose pineal
12
embryonic ontogeny
8
ontogeny 5-hydroxyindoles
8
5-methoxyindoles synthesis
8
synthesis pathways
8
pathways goose
8
prominently increased
8
day-night differences
8

Similar Publications

Organ fibrosis is a pathological process characterized by the inability of normal tissue cells to regenerate sufficiently to meet the dynamic repair demands of chronic injury, resulting in excessive extracellular matrix deposition and ultimately leading to organ dysfunction. Despite the increasing depth of research in the field of organ fibrosis and a more comprehensive understanding of its pathogenesis, effective treatments for fibrosis-related diseases are still lacking. Melatonin, a neuroendocrine hormone synthesized by the pineal gland, plays a crucial role in regulating biological rhythms, sleep, and antioxidant defenses.

View Article and Find Full Text PDF

Well-preserved specimens of a new species of arthrodiran placoderm, sp. nov. (Middle Devonian of Victoria, Australia), reveals previously unknown information on the dermal skeleton, body-shape and dentition of the wide-spread genus .

View Article and Find Full Text PDF

Zebrafish Dark-Dependent Behavior Requires Phototransduction by the Pineal Gland.

J Pineal Res

November 2024

School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel.

Located dorsally underneath a thin translucent skull in many teleosts, the pineal gland is a photoreceptive organ known as a key element of the circadian clock system. Nevertheless, the presence of additional routes of photoreception presents a challenge in determining its specific roles in regulating photic-related behavior. Here, we show the importance of the pineal gland in mediating a prolonged motor response of zebrafish larvae to sudden darkness, both as a photodetector and as a circadian pacemaker.

View Article and Find Full Text PDF

Melatonin, a hormone primarily produced by the pineal gland, exhibits a range of physiological functions that extend beyond its well-known role in regulating circadian rhythms. This hormone influences energy metabolism, modulates insulin sensitivity, and plays a significant role in controlling sleep patterns and food intake. Notably, melatonin is also synthesized in various peripheral organs, including the gastrointestinal system and pancreas, suggesting its function as a local hormone.

View Article and Find Full Text PDF

Microbial melatonin metabolism in the human intestine as a therapeutic target for dysbiosis and rhythm disorders.

NPJ Biofilms Microbiomes

November 2024

Laboratory of Food Systems Biotechnology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.

Melatonin (MT) (N-acetyl-5-methoxytryptamine) is an indoleamine recognized primarily for its crucial role in regulating sleep through circadian rhythm modulation in humans and animals. Beyond its association with the pineal gland, it is synthesized in various tissues, functioning as a hormone, tissue factor, autocoid, paracoid, and antioxidant, impacting multiple organ systems, including the gut-brain axis. However, the mechanisms of extra-pineal MT production and its role in microbiota-host interactions remain less understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!