Lipid-based nanoparticles, a potential nonviral vector due to their good biocompatibility and biodegradability, have been extensively developed for the delivery of small interfering RNA (siRNA). We designed a unique pH-responsive lipid derivative, a dioleylphosphate-diethylenetriamine conjugate (DOP-DETA). DOP-DETA consists of a pH-responsive triamine and unsaturated fatty acids that accelerate membrane fusion. Our results showed that DOP-DETA-based liposomes (DL) efficiently delivered siRNA into the cytoplasm and induced RNA interference even at a low siRNA concentration. The knockdown efficiency of DL depended on the molar ratio of total DL lipids to siRNA. When siRNA was formulated with a sufficient amount of DL, it was efficiently taken up by cells and induced effective gene silencing. Time-lapse imaging showed that siRNA transfected with DL was rapidly internalized into the cells and uniformly dispersed in the cytoplasm within a few minites. The results also showed that DL induced sufficient change in surface charge to allow it to interact with the cell membrane and to allow for rapid endosomal escape. Uptake pathway and time-lapse imaging studies revealed that siRNA was delivered by DL into the cytoplasm, possibly through both macropinocytosis and membrane fusion. The present results emphasize that the modulation of surface charge on nanoparticles is crucial for each siRNA delivery process. Our results also suggest that DL is a potentially useful vector for inducing gene silencing with low-doses of siRNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2019.118606DOI Listing

Publication Analysis

Top Keywords

sirna
10
sirna delivery
8
unique ph-responsive
8
membrane fusion
8
gene silencing
8
time-lapse imaging
8
surface charge
8
key determinants
4
determinants sirna
4
delivery mediated
4

Similar Publications

RPS23RG1 inhibits SORT1-mediated lysosomal degradation of MDGA2 to protect against autism.

Theranostics

January 2025

Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.

Mutations in the synaptic protein MAM domain containing glycosylphosphatidylinositol anchor 2 (MDGA2) have been associated with autism spectrum disorder (ASD). Therefore, elucidating the regulatory mechanisms of MDGA2 can help develop effective treatments for ASD. Liquid chromatography-tandem mass spectrometry was carried out to identify proteins interacting with the extracellular domain of RPS23RG1 and with MDGA2, followed by co-immunoprecipitation assays to confirm protein-protein interactions.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent hepatic disorder worldwide. Arachidonic acid 15-lipoxygenase (ALOX15), an enzyme catalyzing the peroxidation of polyunsaturated fatty acids, plays a crucial role in various diseases. Here, we sought to investigate the involvement of ALOX15 in MASLD.

View Article and Find Full Text PDF

Small nucleolar RNAs may serve as new potential biomarkers for the diagnosis and treatment of liver cancer. The purpose of our study was to reveal the mechanism small nucleolar RNA 42 (SNORA42) affects the proliferation and migration of liver cancer cells. Quantitative real-time PCR (qRT-PCR) was performed to detect the expression of SNORA42 and its host gene.

View Article and Find Full Text PDF

Tangeretin alleviates sepsis-induced acute lung injury by inhibiting ferroptosis of macrophage via Nrf2 signaling pathway.

Chin Med

January 2025

Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.

Background: Sepsis-induced acute lung injury (ALI) is a severe clinical condition accompanied with high mortality. Tangeretin, which is widely found in citrus fruits, has been reported to exert antioxidant and anti-inflammatory properties. However, whether tangeretin protects against sepsis-induced ALI and the potential mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!